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ON THE FIRST CHERN CLASS OF A COMPLEX SUBMANIFOLD
IN AN ALMOST HERMITIAN MANIFOLD
AND THE NORMAL CONNECTION

BY
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1. Introduction. In this note we shall study the first Chern class of the
normal bundle of a o-submanifold M in an almost Hermitian manifold
whose normal curvature tensor satisfies the condition

(A) R°(X, V)¢ = fag(X, JY)J¢

for any vector fields X and Y tangent to M and £ normal to M, where fis a
differentiable function on M.

Condition (A) has been introduced by Ishihara in [6]. In his paper he
classifies the complex submanifolds in the complex projective space satisfying
Condition (A). Therefore, our main result can be considered as a topological
interpretation of Condition (A).

We shall give some examples of o-submanifolds which satisfy Condi-
tion (A).

2. Some lemmas. In this section we give some lemmas about Condition
(A). Therefore, we assume that M is an (n+ p)-dimensional almost Hermitian
manifold, and M an n-dimensional s-submanifold which satisfies Condition
(A). We shall denote by X, Y, Z, ... (respectively, &, n, ...) the vector fields
tangent to M (respectively, normal to M). Then we have the following
lemmas.

Lemma 1. If M is a QK-manifold, then f is a constant function on M.

Proof. It is clear that we have the following Bianchi’s identity:

(2.1) o (FxRP)(Y, Z) =0,
X,Y,Z2

where ¥ denotes the van der Waerden—Bortolotti covariant derivative of R?
given by

(22)  (PxRO)(Y, 2)¢ = Dy R®(Y, Z)E—RP(Vy Y, Z)E—RP(Y, Py Z)¢
~RP(Y, Z) Dx¢.
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As M is a o-submanifold, we have
(2.3) DyJE = (VxJ)E+IDxE.
We compute the covariant derivative of (A) and use (2.1)H2.3). Hence
(XN g(Y, JZ)IE+(Zf)g(X, IY)JE+(Y)g(Z, JX)J¢
+f lg((VxNZ, Y)JE+g((Vy)) X, Z)JE+g((V2)) Y, X)JE)
+19(Y, JZ)(Vx N)E+g(Z, IX)(Py ) E+9g (X, JY) (V) ¢} = 0.

Now we choose Z =JY and g(X, Y) =g(X,JY) =0 and use the fact
that M and M are QK-manifolds:

(X)g(Y, Y)JE+fg(Y, Y)(Px))¢ =0.

Then

(24) (XN IE+f(PxJ)E =0
and

(2.5) ~(UX ) E+f(V;x)IE =0.

As M is a QK-manifold, adding (2.4) and (2.5) we get
(Xf)JE-(JXf)E =0,

which proves that f is a constant.

LemMma 2. Let M be an almost Hermitian manifold, and M a o-submani-
fold of M which satisfies Condition (A). Then the *-Ricci tensors $* and §* of
M and M, respectively, are related by

S* (X, Y)=S*(X, V)+pfg(X, Y)
for any X and Y.

Proof. Using the Gauss equation and the definition of ¢-submanifold
we have

(2.6) S*(X, Y) = S*(X, Y)+2'

:

> 9(o(X, E), oY, E))
=1

+Y R(X, JY, J&, &),
a=1

where |E;, JE;, &, JE,), 1'Si<n, 1 <a<p,is an orthonormal local frame
field on M with {E;, JE;}, 1 <i < n, a local frame field on M and |&,, J&,),
1 <a <p, alocal frame of normal sections on M.

By Ricci’s equation and Condition (A),

27) R(X,JY, U, &) = fa(X, Y)-29(47 X, Y).
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On the other hand,
n 14
(28) Z g(a(x’ El')a G(Y’ El)) = z g(AgaX’ Y)°
i=1 a=1

Combining (2.6), (2.7), and (2.8) we find the required result.
Now we shall prove that the converse of Lemma 2 holds if the complex
codimension p = 1.

LeEMMA 3. Let M be a o-hypersurface of an almost Hermitian manifold

M. Then M satisfies Condition (A) if and only if
S*(X.Y)=5*(X, Y)+f3(X.,Y)

for any X and Y.

Proof. The necessary condition is proved in Lemma 2.

If S*(X, Y)=8*(X, Y)+fg(X, Y), then from (2.6) and (2.8) we obtain

J9(X,Y)=29(A; X, Y)+R(X,JY, JE, §).
Hence, by Ricci’s equation, this implies that

R°(X,JY,J¢, 8 = fy(X, Y),
i.e., the normal connection of M satisfies Condition (A).

Remarks. (1) If M is an F-space, that is, an almost Hermitian manifold
satisfying the Kaehler identity, in particular a Kaehler manifold, then §* = §,
and Lemma 2 has been proved in [6].

(2) The case f =0, that is, the normal connection D is flat, has been
studied in [3].

3. Some examples. In this section we give some examples of complex
submanifolds satisfying Condition (A).

(1) Suppose that M(c) is a complex-space-form of constant holomorphic
'sectional curvature ¢, and M is a totally geodesic complex submanifold. Then
M satisfies Condition (A) with f = ¢/2.

(2) Any Einsteinian complex hypersurface of a complex-space-form sat-
isfies Condition (A).

(3) Let G=U(p+q+r) be the unitary group of order n=p+q+r.
Then H=U(p)xU(q) xU(r) is a closed subgroup of G and M = G/H is a
reductive homogeneous space. If g and Iy are the Lie algebras of G and H,
respectively, then the tangent space to M at a point is

0 Ay Ay
m= "A'xz 0 Azs || Aije #;(C) p,
-4y, -4y 0

where .#,;(C) is the set of complex matrices of order i xj.
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On M we consider the metric obtained by the projection of the only bi-
invariant metric on G. We define

0 A, O
my, = ‘f?lz 0 0 )| A6 H,(0);
0 0O O

m,3 and m,; are defined in an analogous way. So, we have
g=m@®h, m=m,Em;Om,;.
The Riemannian connection on M is given by
PyY =31[X, Y],.

The linear mapping J,,: m,, — m,, defined by J, (4,) = (i4,,) is ob-
viously an automorphism of m,, which satisfies J2, = —I. Let us extend J,,
in m as

J=ay,J12+ay3J 3+ 233J 3.

Then J is an almost complex structure if and only if a} = 1. Moreover, these
almost complex structures are almost Hermitian structures. The following
facts are proved in [2]. We denote by ¢ = {J(x;)} the set of almost
Hermitian structures which have been obtained before:

(1) # does not contain any Kaehlerian structure.

(2) The structures J =J,,—J,;3+J,3 and J = —J;,+J,3—J,3 are
nearly-Kaehlerian.

(3) All the structures of # which are not nearly-Kaehlerian are Hermi-
tian.

Moreover, as a particular case of the Theorem obtained in [2], we infer
that the complex projective space CP! can be isometrically immersed in

M=UQ@yU1)xU1)xU(1)
as a complex totally geodesic submanifold.
Now a simple computation proves the following
ProposiTiON 1. CP! is a complex submanifold of (M,J =J,,—J,3
+J,3) which satisfies Condition (A) with f = —3/4.
ProposITION 2. CP! is a complex submanifold of (M,J =J,,+J,;
—J,3) which satisfies Condition (A) with f = 3/4.

4. A topological interpretation of Condition (A). Let M be an (n+ p)-
dimensional QK-manifold, and M an n-dimensional s-submanifold satisfying
Condition (A). So, we define on M a 2-form ¢’ by

1 & = =
(4.1) (X, Y)=pfo(X, ¥)—3 Zlg((VJXJ)éaa (Fy J) &)
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for any X and Y, where @ is the fundamental 2-form on M and {&,, J&,},
1 <a < p, is an orthonormal local frame of normal sections on M.

It is obvious that &' is globally well-defined and J-invariant. If M is a
Kaehlerian manifold, then @' is proportional to the fundamental 2-form &.

The following Theorem gives a topological interpretation of Condi-
tion (A):

THEOREM. Let M be a c-submanifold of a QK y-manifold M. Assume that
M satisfies Condition (A). Then @' is a closed 2-form and

1
¢1 (T M) = &),

Proof. It is easy to see that the first Chern forms of M and M are
given, respectively, by

_ 1 {.. _ - 1.2 _ _
4.2) (X, JY) =£{S*(X, Y)_E-Z 9((VgJ)E;, (V7)) E)
12 _ _
_—2' Zlg((VfJ)éas (V)?J)éa)}’

1 1.2
4.3) n(X, JY) = {s* X, =3 2 9((Px ) E;, (7)) E.-)}
i=1

for any X, Y and any X, Y tangent to M, where {E;, JE;, &, J&,}, 1 <i<n,
1<a<p, is an orthonormal local frame field on M with {E;, JE;},
1 <i < n, alocal frame field on M and {¢,, J&,}, 1 <a < p, a local frame of
normal sections on M.

Since M is a o-submanifold, it is easy to see that (FyJ)Y = (VyJ)Y.
Thus from Lemma 2, (4.2), and (4.3) we get

4.4)
1 2 _ _
(X, JY) =9 (X, JY) = zl—n{pfg(X, V-3 ¥ a((Pxd) b (VYJ)ca)}.
a=1

Since M and M are QK ;-manifolds, the first Chern forms ¥, and y, are
J-invariant. Then from (4.4) we obtain

1 12 _ _
(X, Y) =y,(X, Y)+£{pfg(JX, -3 Zlg((VJxJ)fa,(VyJ)Ea)}
and from (4.1) we get

1
(X, Y) =y (X, )+ (X, ).
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This proves that d®' = 0; moreover,
_ 1
4.5 ¢, (TM/M) = ¢, (TM)+£ [P].

On the other hand, TM/M = TM@®T* M. Thus
(4.6) ¢y (TM/M) = ¢, (TM)+¢,(T* M).

Now, (4.5) and (4.6) give the result.

Remarks. (1) If M is a Kaehlerian manifold, ¢’ = pf®. Therefore, if M
is a complex submanifold of M satisfying Condition (A), then M is cohomo-
logically Einstein relatively to the normal bundle [7].

(2) Moreover, if M has a flat normal connection, then ¢, (T M) = 0.
This result has been proved in [3].

CoroLLARY 1. Let M be a compact c-submanifold of a QK 5-manifold M
which has a flat normal connection (f =0). Then the Chern number
(=1)"CI(T' M) of T'M is nonnegative.

Proof. By (4.1), &'(X,JX)<0 for any X. We choose a basis
{X:, JX:], 1 <i< n, which diagonalizes the J-invariant symmetric operator
0(X,Y)=d(X,JY).

Then, from the Theorem we obtain

(=" ’{(TLM) =(=1)"[(®Ar... A®)X,IXy, ..., X\, JX) o,
M

where‘w is the volume element on M such that
o(X,,JX,,..., X,, JX,)=1.

This proves the corollary.

It is clear that @' = 0 if and only if it is possible to choose a local frame
of normal vector fields {&,, J&,}, 1 < a < p, which are parallel relative to the
normal connection, that is, D¢, = DJ¢, =0, 1 < « < p. In this case, if M is a
nearly-Kaehlerian manifold and M is a complex submanifold with flat
normal connection, we obtain S(X, Y) =S(X, Y) for any X and Y. More-
over, if M is a complex hypersurface of M with flat normal connection, then
@' =0 if and only if §(X, Y) = S(X, Y). Consequently, we obtain

COROLLARY 2. Let M be an Einstein almost Tachibana space, and M a
complex submanifold of M_with flat normal connection. If & =0, then M is
also an Einstein almost Tachibana space. Moreover, M and M have the same
scalar curvature.

CoroLLARY 3. Let M be a complex hypersurface _c_)f an almost Tachibana
space M with flat normal connection. If both M and M are Einstein and have
the same scalar curvature, then @' = 0.
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