DERIVATES FOR SYMMETRIC FUNCTIONS

BY

H. H. PU AND H. W. PU (COLLEGE STATION, TEXAS)

A real-valued function f defined on $I_0 = [0, 1]$ is said to be symmetric if, for each $x \in I_0^0 = (0, 1)$,

$$f(x+h)+f(x-h)-2f(x) = o(1)$$
 as $h \to 0$.

In [3], Neugebauer has studied the relation between continuity and symmetry and discovered properties that symmetric and continuous functions have in common. In particular, he has proved that if f is measurable and symmetric on I_0 , then $\{x: \bar{f}^-(x) \neq \bar{f}^+(x) \text{ or } f^-(x) \neq \bar{f}^+(x)\}$ is a set of the first category. This is an extension of a theorem obtained by him [2]. The purpose of this paper is to prove that the sets

$$\{x \colon \bar{f}_{ap}^-(x) < \bar{f}^+(x) \text{ or } \bar{f}_{ap}^+(x) < \bar{f}^-(x)\} \quad \text{and} \quad \{x \colon \bar{f}^s(x) \neq \bar{f}^+(x)\}$$

are of the first category if f is measurable and symmetric. It follows easily from the present work that

$$ar{f}_{
m ap}^s(x) \leqslant ar{f}_{
m ap}^+(x) \, = ar{f}_{
m ap}^-(x) \, = ar{f}^+(x) \, = ar{f}^-(x) \, = ar{f}^s(x)$$

holds except possibly for a set of the first category. This observation for continuous functions has been noted by Evans and Humke [1]. Here, $\bar{f}_{ap}^-(x)$, $\bar{f}_{ap}^+(x)$, $\bar{f}_{ap}^s(x)$, $\bar{f}^-(x)$, $\bar{f}^+(x)$, and $\bar{f}^s(x)$ denote the various upper derivates of f at x. For these definitions, we refer the reader to [5].

Throughout this paper, we assume that f is measurable, symmetric on I_0 . For $A \subset I_0$, |A| and \overline{A} denote the Lebesgue outer measure and the closure of A, respectively. For real a,

$$aA = \{aa: a \in A\}$$
 and $A-a = \{a-a: a \in A\}$.

The symbol \sim is used for set difference. Let G denote the set of points in I_0^0 at which f is continuous and let H(x) for each $x \in I_0^0$ denote the set of positive reals h such that $x \pm h \in G$. It should be noted that G has full measure on I_0 and $I_0 \sim G$ is a set of the first category ([3], Theorems 1 and 4).

LEMMA 1. If a > 0, $E \subset (0, a)$, and E has full measure in (0, a), then

(i)
$$\bar{f}^+(x) = \limsup_{h \to 0, h \in E} \frac{f(x+h) - f(x)}{h},$$

(ii)
$$\bar{f}^s(x) = \limsup_{h \to 0, h \in E} \frac{f(x+h) - f(x-h)}{2h}.$$

Proof. Here we give the proof for (i); (ii) can be proved similarly. Let $x \in [0, 1)$ be fixed and let d_0 denote the limit on the right-hand side of (i). We need only to show that $\bar{f}^+(x) \leq d_0$ since the reverse inequality is obvious. Thus we may assume that $d_0 < +\infty$. For any $d > d_0$, there exists $\delta > 0$ such that

$$\frac{f(x+h)-f(x)}{h} < d \quad \text{for } h \in (0, \delta) \cap E.$$

Clearly, we may assume that $\delta \leq \alpha$. From now on the proof parallels the one in [3], p. 30. For any $h \in (0, \delta)$, since E has full measure in $(0, \alpha) = (0, \delta)$, we can find a sequence $\{t_n\}$ decreasing to zero and $h \pm t_n \in (0, \delta) \cap E$ for every n. Thus for every n we have

$$\frac{f(x+h+t_n)-f(x)}{h+t_n} < d$$
 and $\frac{f(x+h-t_n)-f(x)}{h-t_n} < d$.

In case $d \ge 0$, we see that, for every n,

$$\frac{f(x+h-t_n)-f(x)}{h+t_n} = \frac{f(x+h-t_n)-f(x)}{h-t_n} \cdot \frac{h-t_n}{h+t_n} < d \cdot \frac{h-t_n}$$

and hence

$$\frac{f(x+h+t_n)+f(x+h-t_n)-2f(x)}{h+t_n}<2d.$$

Let $n \to \infty$. Since f is symmetric, we obtain

$$\frac{2f(x+h)-2f(x)}{h}\leqslant 2d$$
 or $\frac{f(x+h)-f(x)}{h}\leqslant d$.

In case d < 0, we have, for every n,

$$\frac{f(x+h+t_n)-f(x)}{h-t_n} = \frac{f(x+h+t_n)-f(x)}{h+t_n} \frac{h+t_n}{h-t_n} < d \frac{h+t_n}{h-t_n} < d,$$

and hence

$$\frac{f(x+h+t_n)+f(x+h-t_n)-2f(x)}{h-t_n}<2d.$$

Again, let $n \to \infty$. Then we get

$$\frac{f(x+h)-f(x)}{h}\leqslant d.$$

Since this is true for every $h \in (0, \delta)$, we have $\bar{f}^+(x) \leq d$. But d is an arbitrary number greater than d_0 , so $\bar{f}^+(x) \leq d_0$ and (i) is proved.

It is clear that part (i) of Lemma 1 can be stated as follows:

If $E \subset (x, x+a) \subset I_0$ and E has full measure in (x, x+a), then

$$\bar{f}^+(x) = \limsup_{t \to x, t \in E} \frac{f(t) - f(x)}{t - x}.$$

Also, an analogue involving $\bar{f}^-(x)$ holds.

THEOREM 1. The sets $\{x\colon \bar{f}_{\rm ap}^-(x)<\bar{f}^+(x)\}$ and $\{x\colon \bar{f}_{\rm ap}^+(x)<\bar{f}^-(x)\}$ are of the first category.

Proof. We shall show that $A = \{x : \bar{f}_{ap}^-(x) < \bar{f}^+(x)\}$ is a set of the first category. Let Q denote the set of rationals. We set, for $r \in Q$,

$$A_r = \{x \colon \bar{f}_{ap}^-(x) < r < \bar{f}^+(x)\}$$

and \hat{A}_{rn} (n = 1, 2, ...) to be the set of points x such that

$$\left|\left\{y: \frac{f(y) - f(x)}{y - x} > r, \ 0 < x - y < h\right\}\right| \leqslant \frac{h}{3} \quad \text{for } h \in \left(0, \frac{1}{n}\right).$$

Then $\{x\colon \bar{f}_{\rm ap}^-(x) < r\} \subset \bigcup \{\hat{A}_{rn}\colon n=1,2,\ldots\}$. Let $A_{rn}=\hat{A}_{rn}\cap A_r$. We have $A_r=\bigcup \{A_{rn}\colon n=1,2,\ldots\}$ and

$$A = \bigcup \{A_{rn} \colon r \in Q, \ n = 1, 2, ...\}$$

= $[A \cap (I_0 \sim G)] \cup \bigcup \{A_{rn} \cap G \colon r \in Q, \ n = 1, 2, ...\}.$

Since $I_0 \sim G$ is known to be of the first category, it suffices to show that each $A_{rn} \cap G$ is nowhere dense. First we shall show that $\hat{A}_{rn} \cap G$ is closed relative to G so that

$$\overline{A_{rn} \cap G} \cap G \subset \hat{A}_{rn} \cap G \subset \hat{A}_{rn}.$$

Then we prove that $\overline{A_{rn} \cap G}$ contains no interval.

Let $x_0 \in G \sim \hat{A}_{rn}$ be given. Then there exists $h_0 \in (0, 1/n)$ such that

$$\left| \left\{ y \colon \frac{f(y) - f(x_0)}{y - x_0} > r, \ 0 < x_0 - y < h_0 \right\} \right| > \frac{h_0}{3}.$$

Let $S = \{y : [f(y) - f(x_0)]/(y - x_0) > r, \ 0 < x_0 - y < h_0\}$. Since $x_0 \in G$, [f(y) - f(x)]/(y - x) for each fixed $y \in S$ is continuous at $x = x_0$ and there

is an integer k = k(y) such that

(1)
$$\frac{f(y) - f(x)}{y - x} > r$$
 and $0 < x - y < h_0$ whenever $|x - x_0| < \frac{1}{k}$.

For each positive integer k, let S_k be the set of $y \in S$ such that (1) holds. Clearly, $S_1 \subset S_2 \subset \ldots$ and $S = \bigcup \{S_k : k = 1, 2, \ldots\}$. It follows that

$$\lim_{k\to\infty}|S_k|=|S|>h_0/3\,,$$

and hence there exists k_0 such that $|S_{k_0}| > h_0/3$. Now, let x be any fixed point in $(x_0-1/k_0, x_0+1/k_0)$. We see that

$$S_{k_0} \subset \left\{ y \colon \frac{f(y) - f(x)}{y - x} > r, \ 0 < x - y < h_0 \right\}.$$

Therefore

$$\left| \left\{ y : \frac{f(y) - f(x)}{y - x} > r, \ 0 < x - y < h_0 \right\} \right| > \frac{h_0}{3}.$$

That is, $x \notin \hat{A}_{rn}$. We have just shown that

$$\left(x_0-\frac{1}{k_0},\ x_0+\frac{1}{k_0}\right)\cap G\subset G\sim \hat{A}_{rn}.$$

It follows that $G \sim \hat{A}_{rn}$ is open relative to G or, equivalently, $\hat{A}_{rn} \cap G$ is closed relative to G.

Suppose that, for some r and n, $A_{rn} \cap G$ is not nowhere dense. There exists an interval $(\alpha, \beta) \subset I_0$ such that $(\alpha, \beta) \subset \overline{A_{rn} \cap G}$. Thus

$$(\alpha, \beta) \cap G \subset \overline{A_{rn} \cap G} \cap G \subset \hat{A}_{rn}.$$

Without loss of generality, we assume that $\beta - \alpha < 1/n$. Now we fix an arbitrary point $x_0 \in (\alpha, \beta) \cap G$. For each $x \in (x_0, \beta) \cap G$, we have $x \in \hat{A}_{rn}$ and

$$\left| \left\{ y \colon \frac{f(y) - f(x)}{y - x} > r, \ 0 < x - y < h \right\} \right| \leqslant \frac{h}{3} \quad \text{for } h \in \left(0, \frac{1}{n}\right).$$

In particular, for $h = x - x_0$,

$$\left| \left\{ y : \frac{f(y) - f(x)}{y - x} > r, \ x_0 < y < x \right\} \right| \le \frac{x - x_0}{3}.$$

This implies that

$$igg|G \cap \Big\{ y \colon rac{f(y) - f(x)}{y - x} \leqslant r, \ x_0 < y < rac{x_0 + x}{2} \Big\} igg|$$

$$= \left| \Big\{ y \colon rac{f(y) - f(x)}{y - x} \leqslant r, \ x_0 < y < rac{x_0 + x}{2} \Big\} \right| > 0.$$

Hence there exists $x_1 \in G$ such that

$$x_0 < x_1 < \frac{x_0 + x}{2}$$
 and $\frac{f(x_1) - f(x)}{x_1 - x} \leqslant r$.

Replacing x by x_1 in the above argument, we see that there exists $x_2 \in G$ such that

$$x_0 < x_2 < \frac{x_0 + x_1}{2}$$
 and $\frac{f(x_2) - f(x_1)}{x_2 - x_1} \leqslant r$.

Moreover, we have

$$0 < x_2 - x_0 < \frac{x_1 - x_0}{2} < \frac{x - x_0}{2^2}$$

and

$$\frac{f(x_2)-f(x)}{x_2-x}=\frac{f(x_2)-f(x_1)}{x_2-x_1}\frac{x_2-x_1}{x_2-x}+\frac{f(x_1)-f(x)}{x_1-x}\frac{x_1-x}{x_2-x}\leqslant r.$$

Repeating the process, we get a sequence $\{x_m\}$ in G such that

$$0 < x_m - x_0 < \frac{x - x_0}{2^m}$$
 and $\frac{f(x_m) - f(x)}{x_m - x} \leqslant r$

for every m. Let $m \to \infty$. Since $x_0 \in G$, we obtain

$$\frac{f(x_0)-f(x)}{x_0-x}\leqslant r.$$

This inequality holds for every $x \in (x_0, \beta) \cap G$. By the remark following Lemma 1, $\bar{f}^+(x_0) \leq r$. Thus $x_0 \notin A_r$ and $x_0 \notin A_{rn} \cap G$. Consequently,

$$[(a,\beta)\cap G]\cap [A_{rn}\cap G]=\emptyset,$$

and hence $(\alpha, \beta) \cap G \cap \overline{A_{rn} \cap G} = \emptyset$. This contradicts the assumption that $(\alpha, \beta) \cap G \subset \overline{A_{rn} \cap G} \cap G$. The proof is completed.

Since $\bar{f}_{ap}^-(x) \leqslant \bar{f}^-(x)$ and $\bar{f}_{ap}^+(x) \leqslant \bar{f}^+(x)$ for all x, it is immediate from Theorem 1 that $\{x\colon \bar{f}^-(x)\neq \bar{f}^+(x)\}$ and $\{x\colon \bar{f}_{ap}^-(x)\neq \bar{f}_{ap}^+(x)\}$ are sets of the first category. Thus we have given another proof of Neugebauer's Theorem 10 in [3] and extended the result in [4].

LEMMA 2. For each $x \in I_0^0$, $H(x) \subset (0, \min\{x, 1-x\})$ and H(x) has full measure in this interval.

Proof. By our definition, $H(x) = \{h > 0 : x \pm h \in G\}$ and $G \subset (0, 1)$. If $h \in H(x)$, then h > 0 and 0 < x - h < x + h < 1. Clearly, $H(x) \subset (0, \min\{x, 1 - x\})$. Using the facts that the Lebesgue measure is invariant under translation and reflection and that G has full measure in I_0 , we can show that H(x) has full measure in $(0, \min\{x, 1 - x\})$.

THEOREM 2. The set $\{x\colon \bar{f}^s(x)\neq \bar{f}^+(x)\}$ is of the first category Proof. Step I. The set $A=\{x\colon \bar{f}^s(x)<\bar{f}^+(x)\}$ is of the first category.

As in the proof of Theorem 1, we set $A_r = \{x : \bar{f}^*(x) < r < \bar{f}^+(x)\}$ for $r \in Q$ and, for each n, let \hat{A}_{rn} be the set of points x such that

$$\frac{f(x+h)-f(x-h)}{2h} \leqslant r$$
 for $h \in \left(0, \frac{1}{n}\right) \cap H(x)$.

Also, set $A_{rn} = \hat{A}_{rn} \cap A_r$. By Lemma 1, $x \in \hat{A}_{rn}$ for some n if $\bar{f}^s(x) < r$. Hence $A_r = \bigcup \{A_{rn} : n = 1, 2, \ldots\}$ and

$$A = [A \cap (I_0 \sim G)] \cup \bigcup \{A_{rn} \cap G : r \in Q, n = 1, 2, ...\}.$$

If x_0 is an arbitrarily fixed point in $G \sim \hat{A}_{rn}$, then there is an $h_0 \in (0, 1/n) \cap H(x_0)$ such that

$$\frac{f(x_0+h_0)-f(x_0-h_0)}{2h_0} > r.$$

Since $h_0 \in H(x_0)$, $[f(x_0+h)-f(x_0-h)]/2h$, as a function of h, is continuous at h_0 . Also,

$$h_0 \in (0, 1/n) \cap H(x_0) \subset (0, 1/n) \cap (0, \min\{x_0, 1-x_0\}).$$

There exists $\eta > 0$ such that

$$h \in \left(0, \frac{1}{n}\right) \cap (0, \min\{x_0, 1-x_0\})$$

and

$$\frac{f(x_0+h)-f(x_0-h)}{2h} > r$$

for all h satisfying $|h-h_0| < \eta$. Let

$$H = \{h \in H(x_0) \colon |h - h_0| < \eta\}.$$

Then, for fixed $h \in H$, [f(x+h)-f(x-h)]/2h, as a function of x, is continuous at x_0 and there exists a positive integer k = k(h) such that

(2)
$$\frac{f(x+h)-f(x-h)}{2h} > r \quad \text{for } x \in \left(x_0 - \frac{1}{k}, x_0 + \frac{1}{k}\right).$$

Let H_k denote the set of $h \in H$ such that (2) holds. We see easily that $H_1 \subset H_2 \subset \ldots$ and $H = \bigcup \{H_k \colon k = 1, 2, \ldots\}$. Since $\{h \colon |h - h_0| < \eta\}$ is contained in $(0, \min\{x_0, 1 - x_0\})$ in which $H(x_0)$ has full measure and $H = \{h \in H(x_0) \colon |h - h_0| < \eta\}$, we have $|H| = |\{h \colon |h - h_0| < \eta\}| = 2\eta$. Therefore, there is a k_0 such that $|H_{k_0}| > \eta$ and $1/k_0 < \eta$. We want to show that the neighborhood $(x_0 - 1/k_0, x_0 + 1/k_0) \cap G$ of x_0 relative to G is contained in $G \sim \hat{A}_{rn}$, and thus we conclude that $\hat{A}_{rn} \cap G$ is closed relative to G. Let $x \in (x_0 - 1/k_0, x_0 + 1/k_0) \cap G$ be given. In view of the facts that

$$H_{k_0} \subset H \subset H(x_0) \subset (0, \min\{x_0, 1-x_0\}),$$

H(x) has full measure in the interval $(0, \min\{x, 1-x\})$ (Lemma 2), and $|x-x_0| < 1/k_0 < \eta$, we obtain

$$|H_{k_0} \sim H(x)| \leqslant |(0, \min\{x_0, 1-x_0\}) \sim (0, \min\{x, 1-x\})|$$
 $< \frac{1}{k_0} < \eta < |H_{k_0}|.$

This implies that $H_{k_0} \cap H(x) \neq \emptyset$. For any $h \in H_{k_0} \cap H(x)$, we have $h \in (0, 1/n) \cap H(x)$ and

$$\frac{f(x+h)-f(x-h)}{2h} > r.$$

It follows that $x \notin \hat{A}_{rn}$, and hence $(x_0 - 1/k_0, x_0 + 1/k_0) \cap G \subset G \sim \hat{A}_{rn}$. Now we have, as in the proof of Theorem 1,

$$\overline{A_{rn} \cap G} \cap G \subset \hat{A}_{rn} \cap G \subset \hat{A}_{rn}.$$

Suppose that, for some r and n, there exists an interval $(\alpha, \beta) \subset I_0$ such that $\beta - \alpha < 1/n$ and $(\alpha, \beta) \subset \overline{A_{rn} \cap G}$. Then $(\alpha, \beta) \cap G \subset \hat{A}_{rn}$. Let $x_0 \in (\alpha, \beta) \cap G$ be given. As we did for Theorem 1, Step I will be proved if we show that $\bar{f}^+(x_0) \leq r$.

Let
$$S = \{x \in (x_0, \beta) : \frac{1}{2}(x_0 + x) \in G\}$$
. Then

$$|(x_{\scriptscriptstyle 0},\,\beta)\, \sim S|\,=\, |(x_{\scriptscriptstyle 0},\,\beta)\, \sim (2G-x_{\scriptscriptstyle 0})|$$

$$=2\left|\left(\frac{x_0}{2},\frac{\beta}{2}\right)\sim\left(G-\frac{x_0}{2}\right)\right|=2\left|\left(x_0,\frac{x_0+\beta}{2}\right)\sim G\right|=0$$

and

$$|(x_0,\beta)\sim(S\cap G)|\leqslant|(x_0,\beta)\sim S|+|(x_0,\beta)\sim G|=0.$$

Hence $S \cap G$ has full measure in (x_0, β) . For any $x \in S \cap G$, if we set $z = \frac{1}{2}(x_0 + x)$ and $h = \frac{1}{2}(x - x_0)$, we see that

$$z \in (\alpha, \beta) \cap G \subset \hat{A}_{rn}$$
 and $h \in H(z)$

since $z+h=x\in G$ and $z-h=x_0\in G$. Therefore we have

$$\frac{f(z+h)-f(z-h)}{2h}\leqslant r, \quad \text{i.e.,} \quad \frac{f(x)-f(x_0)}{x-x_0}\leqslant r.$$

By the remark following Lemma 1, $\bar{f}^+(x_0) \leq r$.

Step II. The set $B = \{x : \bar{f}^+(x) < \bar{f}^s(x)\}$ is of the first category.

Just as before, we set $B_r = \{x \colon \bar{f}^+(x) < r < \bar{f}^s(x)\}$ for $r \in Q$. Let \hat{B}_{rn} be the set of x such that

$$\frac{f(x+h)-f(x)}{h}\leqslant r\quad \text{ for } h\in\left(0,\frac{1}{n}\right)\cap H(x)$$

and $B_{rn} = \hat{B}_{rn} \cap B_r$ for n = 1, 2, ... We see that

$$B = [B \cap (I_0 \sim G)] \cup \bigcup \{B_{rn} \cap G : r \in Q, n = 1, 2, ...\}.$$

A similar argument as we used in Step I shows that $\hat{B}_{rn} \cap G$ is closed relative to G. We want to show that each $B_{rn} \cap G$ is nowhere dense. Suppose, for some r and n, there exists $(\alpha, \beta) \subset I_0$ such that $\beta - \alpha < 1/n$ and $(\alpha, \beta) \subset \overline{B_{rn} \cap G}$. Then $(\alpha, \beta) \cap G \subset \hat{B}_{rn}$. We fix an $x_0 \in (\alpha, \beta) \cap G$ and let

$$p = \min\{\frac{1}{3}\min\{x_0, 1-x_0\}, x_0-a, \beta-x_0\}.$$

By a moment's reflection, we find that $(0,p) \cap H(x_0) \cap \frac{1}{3}H(x_0)$ has full measure in (0,p). For $h \in (0,p) \cap H(x_0) \cap \frac{1}{3}H(x_0)$, let $x_1 = x_0 - h$ and $h_1 = 2h$. We see easily that

$$x_1 \in (\alpha, \beta) \cap G \subset \hat{B}_{rn}$$
 and $h_1 \in H(x_1) \cap (0, 1/n)$.

Hence

$$\frac{f(x_1+h_1)-f(x_1)}{h_1}\leqslant r, \quad \text{ i.e., } \quad \frac{f(x_0+h)-f(x_0-h)}{2h}\leqslant r.$$

By Lemma 1, $\bar{f}^s(x_0) \leq r$. This leads to a contradiction as in the proof of Theorem 1. Step II and hence this theorem is proved.

REFERENCES

[1] M. J. Evans and P. D. Humke, Directional cluster sets and essential directional cluster sets of real functions defined in the upper half-plane, Revue Roumaine de Mathématiques Pures et Appliques 23 (1978), p. 533-542.

- [2] C. J. Neugebauer, A theorem on derivates, Acta Scientiarum Mathematicarum (Szeged) 23 (1962), p. 79-81.
- [3] Symmetric, continuous and smooth functions, Duke Mathematical Journal 31 (1964), p. 23-32.
- [4] H. H. Pu, J. D. Chen and H. W. Pu, A theorem on approximate derivates, Bulletin of the Institute of Mathematics, Academia Sinica, 2 (1974), p. 87-91.
- [5] S. Saks, Theory of the integral, Warszawa-Lwów 1937.

DEPARTMENT OF MATHEMATICS
TEXAS A&M UNIVERSITY, COLLEGE STATION, TEXAS

Reçu par la Rédaction le 28.3.1979