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A real-valued function f defined on I, = [0, 1] is said to be symmetric
if, for each z e I = (0, 1),

fe+h)+f(x—h)—2f(x) =0(1) as h—0.

In [3], Neugebauer has studied the relation between continuity
and symmetry and discovered properties that symmetric and continuous
functions have in common. In particular, he has proved that if f is meas-
urable and symmetric on I,, then {z: f~(2) # f*(«) or f~(x) # f*+(2)}
is a set of the first category. This is an extension of a theorem obtained
by him [2]. The purpose of this paper is to prove that the sets

{o: fop@) <ft(@) or fo(@) <f (x)} and {o: fP(a) #F* (o)}

are of the first category if f is measurable and symmetric. It follows easily
from the present work that

fon (@) < Fp (@) = fop (@) = f* (@) = f~(2) = f(w)

holds except possibly for a set of the first category. This observation
for continuous functions has been noted by Evans and Humke [1]. Here,
(@), (@), [o(@), f~(®), f*(2), and f°(z) denote the various upper
derivates of f at . For these definitions, we refer the reader to [5].

Throughout this paper, we assume that f is measurable, symmetric
on I,. For A c I,, |A] and 4 denote the Lebesgue outer measure and the
closure of A, respectively. For real a,

ad = {aa: a€ A} and A—a = {a—a: acd}.

The symbol ~ is used for set difference. Let G denote the set of
points in I) at which f is continuous and let H(x) for each x € I denote
the set of positive reals h such that x4k € @. It should be noted that @
has full measure on I, and I, ~@ is a set of the first category ([3], The-
orems 1 and 4).
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 LEMMA 1. If a>0, Ec (0, a), and E has full measure in (0, a),

then
(M) 7* (@) = timsup TE TN 1)
h—0, heE h
(ii) f2(x) = limsup Jleth) —j@—h) .
b0, heE 2h .

Proof. Here we give the proof for (i); (ii) can be proved similarly.

Let » € [0, 1) be fixed and let d, denote the limit on the right-hand
side of (i). We need only to show that f*(z) < d, since the reverse inequality
is obvious. Thus we may assume that d, < -+ oco. For any d > d,, there
exists 6 > 0 such that

f@+h)—f(=)
h

\

<d for he(0,d)nE.

Clearly, we may assume that 6 < a. From now on the proof parallels
the one in [3], p. 30. For any & € (0, J), since E has full measure in (0, a)
> (0, 8), we can find a sequence {,} decreasing to zero and h +1t, € (0, 8)nE
for every n. Thus for every » we have

h+t, h—t,

In case d > 0, we see that, for every =,

f($+h—tn)—f($) _f(m'l_h— n)—f(w)h—'tn h_tn
h+t, B h—t, h+tn<dh+tﬂ<d’
and hence
f@thtt) +f@+h—t) 2@ _,.

h+1,

Let » — oo. Since f is symmetric, we obtain

2/ (@+h) —2f(@) f@t+h—f@) _

<
7 2d or B
In case d < 0, we have, for every =,
J@th+t)~f@) _f@th+t)—f@) btt, _ htty o
h—t, h+t, h—t, h—1t,

and hence
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Again, let » - oo. Then we get

foth—1o) g

Since this is true for every h € (0, 8), we have f* (#) < d. But 4 is an
arbitrary number greater than .d,, so f*(z) < d, and (i) is proved.

It is clear that part (i) of Lemma 1 can be stated as follows:
If Ec (v,v+a) < I, and E has full measure in (v, x+ a), then

ffz) = limsupM.

toz, teE '—@%

Also, an analogue involving f~(x) holds.

THEOREM 1. The sets {: for(2) <[ (2)} and {®: fi(x) < f~(»)} are
of the first category.

Proof. We shall show that A = {#: f (2) < f*(x)} is a set of the
first category. Let @ denote the set of rationals. We set, for r € @,

A, = {&: o) <r < fr(2)}

and A, (n =1,2,...) to be the set of points x# such that

(y)—f (@) h 1
“y:%_—%—>r,0<w—y<h}l<§ for. h € 0,-?—?,- .
Then f{o: fop(#)<r}c | J{4,,: n=1,2,...}. Let 4,, = 4,,nA4,.
We have 4, = | J{4,,: » =1,2,...} and

A=U{4:7€Q,n=1,2,..}

= tAn(Io ~@lvJ{4,,nG: reQ, n =1,2,...}.

Since I, ~ @ is known to be of the first category, it suffices to show
that each A,,n@ is nowhere dense. First we shall show that 4,,nG is
closed relative to G so that

A,,nGnGc 4,,nGc 4,,.

Then we prove that 4,,nG contains no interval.

Let 2, € G ~ A,, be given. Then there exists h, € (0, 1/n) such that
[ J(y)—f(m,) _ h} hy
ly. —y—wo >r, 0 < 2y—yY<hy >3.

Let 8 = {y: [f(y)—f(%)1/(y —xp) > 7, 0 < @y —y < hy}. Since z, € G,
[f(y)—f(x)]/(y — =) for each fixed y € 8 is continuous at # = &, and there
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is an integer k¥ = k(y) such that
J(y)—f(@)

1
1) W—>r and 0 < z—y < hy, whenever |z —z,| <£.

For each positive integer k, let S, be the set of y € § such that (1)
holds. Clearly, 8, c 8; <= ... and 8= J{8;: ¥ =1,2,...}. It follows
that

lim|8,| = |8] > ho/3,

k—oo
and hence there exists k, such that |S; | > ko/3. Now, let # be any fixed
point in (2y—1/ky, wo+1/k,). We see that

8, © {y: —f—(i;—%)->r, 0<w—y<ho}.
Therefore
— h
l{y: ————f(y;_i( ) >r, 0<o— y<ho} >—33

That is, # ¢ A,,. We have just shown that

1
(wo k,wo+ )nGcGNAm
0

It follows that G ~ A,, is open relative to G or, equivalently, 4,,nG
is closed relative to G.
Suppose that, for some r and », A,, NG is not nowhere dense. There

exists an interval (a, ) = I, such that (e, f) = 4,,nG. Thus

(a, B)nG < 4,,nGNG c 4,,.

Without loss of generality, we assume that f—a < 1/n. Now we
fix an arbitrary point x, € (a, f)nG. For each z € (z,, f/)n@, we have
xed,, and

v ORIIC)

t h 1
p— >r,0<w—y<h}|<§— for he(O,;).

In particular, for h = v —a,,

' J(y) —f(@)
Y —

x—x,

<73

>r, wo<y<m}
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This implies that

’Gn{y: w K1y, Zp<y< a'";w}!
=Hy: f(_y;_:—y <1 2, <y < w°;_m}|>0-

Hence there exists x, € G such that

w°+w and M <r.

To < Xy <
2 T, —

Replacing # by @, in the above argument, we see that there exists
xy € @ such that

T+ z,)—f(x
Ty < Xy < ° 1 and .f(2)—f(1_)< r.
2 Ty — o,
Moreover, we have
X, —@ r—x
0< By—Bpg< ——— < 0

2 22
and

f(zs) —f(2) _ f(@a) —f(2)) 22—, + f(@) —~f(2) ,—2 <7

X
mg—m wz—"wl wz_w ml—w wz—w

Repeating the process, we get a sequence {x,} in G such that

e 4 f(wm)—f(w)<r

0< 2, —xy <
m 2m By — &

for every m. Let m — oo. Since z, € G, we obtain

S(@o) —f(2) <r.
Ty—

This ine_quality holds for every « € (x,, f) nG. By the remark following
Lemma 1, f*(z,) <r. Thus z,¢ 4, and z, ¢ 4,,nG. Consequently,

a, B)nG]n[4,,nG] = O,

and hence (a,f)nGnA,,nG = @. This contradicts the assumption
that (a, 8)nG@ < 4,,nGnG. The proof is completed.

Since fop () < f~(2) and fif,(#) < f*(2) for all =, it is immediate from
Theorem 1 that {: f~(x) # f*(#)} and {#: fo(2) # fi,(x)} are sets of
the first category. Thus we have given another proof of Neugebauer’s
Theorem 10 in [3] and extended the result in [4].

11 — Colloquium Mathematicum XLVI.2
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LeMMA 2. For each z € Iy, H(x) < (0, min{x, 1 —x}) and H(z) has
full measure in this interval.

Proof. By our definition, H(z) = {h > 0: £+ h €G} and G < (0, 1).
If heH(x), then Ah>0 and O0<ao—h<ao+h<1l Clearly, H(x)
< (0, min{w, 1 —a}). Using the facts that the Lebesgue measure is in-
variant under translation and reflection and that G has full measure
in I,, we can show that H(z) has full measure in (0, min{z, 1—z}).

THEOREM 2. The set {x: f°(x) #f*(x)} is of the first category.

Proof. Step I. The set A = {x: f*(z) < f*(x)} is of the first cate-
gory.

As in the proof of Theorem 1, we set 4, = {z: f*(2) < r < f* (@)}
for r € Q and, for each n, let A,, be the set of points x such that

f(@+h)—f(x—h) <
2h

r for he (O, %) NnH(z).

Also, set A,, = A,,nA,. By Lemma 1, € 4,, for some n if f*(z) < r.
Hence 4, = | J{4,,: » =1,2,...} and
A=[AnI,~@IVU{4,,nG: r€Q, n =1,2,...}.

If @, is an arbitrarily fixed point in G ~ 4,,, then there is an
ho € (0,1/n)n H(z,) such that

F(@o+ ho) — f(@o— ho)
2ho >r.

Since ko € H(x,), [f(®o+h)—f(wo—h)]/2h, as a - function of h, is
continuous at A,. Also,

ho€(0,1/n)nH (2,) = (0,1/0)n(0, min{z,, 1 —2,}).

There exists n > 0 such that

he (0, %)n(O, min{w,, 1 —,})

and

f(@o+h)—f(2o—h)
oh >r

for all h satisfying |h —h,| < 7. Let

H = {h € H(z,): |h—ho| < n}.
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Then, for fixed h e H, [f(x+h)—f(x—h)]/2h, a8 a function of =,
is continuous at x, and there exists a positive integer ¥ = k(k) such that

f(@+h)—f(w—h) 1 1
oh %’ “’“ﬁ)'

Let H, denote the set of » € H such that (2) holds. We see easily
that H, <« Hyc ... and H = | J{H,:k =1,2,...}. Since {h: |h—ho| < 7}
is contained in (0, min{z,, 1 —x,}) in which H(z,) has full measure and

= {h e H(x,): |h—hol <n}, we have |H| = |{h: |h—ho <n}| =21.
Therefore, there is a k, such that |[Hy|> % and 1/k, <7. We want to
show that the nelghborhood (wo—l/ko, To+1/ko) NG of o relative to G
is contained in @ ~ 4,,, and thus we conclude that A, NG is closed
relative to G. Let x € (x,—1/ky, xy+1/ke) "G be given. In view of the
facts that

(2)

>r for xe (wo—

Hko c H [ H(wo) c (0, min{wo, 1—560}),
H (x) has full measure in the interval (0, min{z, 1—x}) (Lemma 2), and
|z — x| < 1[ky < 7, We obtain
|Hko ~ H(z)| < (0, min{®,, 1 —2o}) ~ (0, min{z, 1 —a})|
1
k <n< [Hy,|
0

This implies that H; nH(z) # 0. For any h € H; nH(x), we have

he(0,1/n)nH(x) and

f@+h)—f(x—h)
2h =

It follows that « ¢ A,,, and hence (w,—1/k,, o+1/k)) NG c G ~ A4,,.
Now we have, as in the proof of Theorem 1,

A,,nGnG c 4,,nGc 4,,.

Suppose that, for some r and =, there exists an interval (a, g) < I,

such that §—a<1/n and (e,p) < 4,,nG. Then (a,B)nG c A4,,. Let
@y € (ay f)nG be given. As we did for Theorem 1, Step I will be proved
if we show that f+(x,) <r.

Let 8 = {w € (%, f): }(wo+2) €G}. Then

[(Toy B) ~ 8| = (@0, B) ~ (2G —2,)|
ﬂ To Zo+
(3 3)~(o=F) =2[(= 3 )"'G|=

(@0, B) ~ (8@ < |(wo, B) ~ 8|+ |(@o, B) ~ G| = 0.

=2 =2

and
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Hence 8N G has full measure in (x,, §). For any z € 8n@G, if we set
z = }(wy+2) and b = (v —x,), we see that

ze(a,)nGc 4,, and heH()

since 2+ h = 2z €@ and z2—h = x, € G. Therefore we have

feth) —fle=h) . J@-f@)

2h = N ®—,

By the remark following Lemma 1, ft(z,) <.

Step II. The set B = {x: f*(2) < f*()} is of the first category.

Just as before, we set B, = {z: f*(2) < r < fé(z)} for r € Q. Let ﬁm
be the set of # such that

f(@+h) —f(x)
h

<r forh e(o, —:;)nH(w)

and B,, = ﬁmnB, for n =1,2,... We see that
B = [Bn(I, ~@IVJ{B,nG: r€Q, n =1,2,...}.

A similar argument as we used in Step I shows that I}mnG is closed
relative to G. We want to show that each B,, n@ is nowhere dense. Suppose,
for some r and n, there exists (a, f) = I, such that §—a < 1/n and (a, )

c B,,n@. Then (a, f)nG c B,,. We fix an z, € (a, f)nG and let
P = min{imin{z,, 1 —as}, ,—a, f—z,}.

By a moment’s reflection, we find that (0, p)nH (z,)n%H (2,) has
full measure in (0, p). For h e (0, p)nH(x,)niH (2,), let x, =xy—h
and h, = 2h. We see easily that

@z, €(a,f)nG < B,, and h,eH(z)n(0,1/n).
Hence

Sz, + h};) —f(=,) <r, ie, f(zo+h) 2_hf(wo— h) <.

By Lemma 1, f*(2,) < r. This leads to a contradiction as in the proof
of Theorem 1. Step II and hence this theorem is proved.
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