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In 1945 Beurling [1] proved the following theorem:

If f is a bounded uniformly continuous function on the real line R,
then the closure in the topology of uniform convergence on compact
sets of the linear span of the translates of f contains the function ¢ ()
= exp (i4t).

If in Beurling’s theorem an L -function is taken for f and the uniform
convergence on compact sets is replaced by the *-weak convergence in
L, = L;, the theorem thus modified is Wiener’s Tauberian theorem.

We say that a function f on an arbitrary (not necessarily Abelian)
locally compact group G has Wiener’s Tauberian property (W-T-property)
if the *-weak closure of the linear span of the right translates of f contains
-a normalized extreme continuous positive-definite function.

In [3] Gel’fand and Naimark proved what they call a generalized
Beurling’s theorem. If A is a Banach *-algebra with the unit element,
then A is symmetric (i.e., Spx*x > 0 for # in A) if and only if for every
linear functional F on A the *-weak closure of {¥,: aeA}, where <z, F,)
= {ax, F), contains an extreme positive normalized functional.

Suppose that L,(G@) is symmetric. Then so is the algebra A = Ce+
-+ L, (@), where e is the unit element of 4. Consequently, by the Gel’fand-
Naimark theorem, for every L_-function f on G the *-weak closure of
the set {f*a: aeL,(G)} contains a continuous positive-definite function ¢.
However, we do not know any simple way of shewing that ¢ may be
non-zero, even in the case if G is Abelian. In fact, in the latter case such
a ¢ does exist but the proof requires additional properties of the algebra
L,(@) (e.g., regularity). Thus the theorem of Gel’fand and Naimark does
not readily yield neither the quoted Beurling’s nor Wiener’s Tauberian
theorem (saying that every L. function on R has W-T property). The
aim of this paper is to study an analogue of the ‘‘generalized Beurling
theorem’’ for locally compact (may be non-abelian) groups, and to point
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out connections between a version of it and the symmetry of the L,-group
algebra.

The paper is organized as follows. After preliminary section 1 we
define class F(G) = F of functions in L (@) such that for each f in F
there is # in L,(G@) with u * f = f. The aim of section 2 is to prove that
the symmetry of L,(G) is equivalent to the fact that each f in F have the
W-T-property. In section 3 the class F is studied more closely, its cha-
racterisation is given in the case of compact groups and a theorem is
provided for a general case. Then in section 4 some attempts are made
to characterize the class W-T. For instance, it is proved that almost
periodic functions are in W-T. Finally, in section 5, we make some remarks
on the preservation of F, W-T and the symmetry of L, under taking
homomorphic images and subgroups.

1. Preliminaries. Let G be a locally compact topological group. The
differential of the left-invariant Haar measure is denoted by ds, and the
Radon-Nikodym derivative of the right-invariant Haar measure with
respect to the left-invariant Haar measure is denoted by A4(s). Let L,(G)
denote the Banach *-algebra with the norm, multiplication, and invo-
lution defined by

lall = [ l(9)ds, @xy(t) = [a@Ey(s™ )ds, 2*(t) = 4@ a(t™),

respectively. The dual space L. (@) of L,(G@) consists of the essentially
bounded measurable functions on G and each f in L (@) defines a func-
tional on L, (@) by

(@, fy = [w(8)f(s™")ds.
G

The following equalities are easy to verify
(1.1) la*xx,f> ={x,f*xa>, where a(s) = 4(s)a(s),

(1.2) la*xx,f> =<a,x*xf).

Let A(G) be equal to L, (@), if G is discrete, and to Ce+ L,(G), if G
is not discrete. Most ‘of the results in the present paper are much easier
to prove if G is discrete, so we shall focus our attention on the non-discrete
case and assume throughout that

A(G) = Ce+L,(G).

The dual space 4’ (G) of A(G) is then obviously equal to C X L (@),
and if F = (a,f), then {de+2z, F) = ad+ (@, ).
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For f in L (@) let f(f) denote the *-weak closure of the linear span
of the right translates of f. It is easy to show that

BUf) = {f*a: acLy (@)},

where the closure is taken in the *-weak topology in L_(Q).
Let us recall (cf. [5], p. 191) that a left ideal I in L, (@) is called regular
if there exists  in L, (@) such that for every « in L,(G) we have x — 2 * u 1.
For every regular left ideal I in L, (@) there is a (proper) left ideal I’
in 4(G) such that '

I=0nL(&

(cf. [5], p. 192). Clearly, I' contains an element e+« with « in L,(G).
A regular left ideal I in L,(@) is a non-trivial subspace of L,(G) and,
consequently, there is a non-zero function f in L (@) such that

(1.3) {z,f> =0 for x in I.

Let F denotfe the set of the non-zero functions in L_(G) such that
for each f in F there is a regular left ideal I for which (1.3) holds. The
following proposition describes the class F somewhat better.

ProposITION 1.1. We have feF if and only if there is a w in L,(G) such
that

(1.4) f=wuxf almost everywhere.

Proof. If I is a left regular ideal, then there is a « in L, (G) such that,
for every # in L,(@), x—x * uel. Consequently, for every « in L,(G) we
have

{w-w*“7f> =&, ) —(exu,f) =<2, f>—<z,uxf) ={x, f—uxf)=0,

whence f—uxf = 0 a.e.
Conversely, if f satisfies (1.4), then the set

I ={wel,(@): <a*xx,f> =0 for each a in L,(Q)}

is a left ideal. Since f = - *f a.e., for each 2 in L,(@) we have
{a*x—ax*z*u,f> =0, which means that x — x * u<I and, consequently,
I is regular.

PRrROPOSITION 1.2. If a hermitian element e+ x in A(G) vs not invertible
in A(G), then there exists a function f in F such that

Mtz+xf =0 a.ec.

Proof. If a hermitian element y = le+ 2 is not invertible, then
A(G)y = I is a proper left ideal. Consequently, there is a non-zero fune-
tional ' = (a,f) in A’'(G) such that (z, F) = 0 for 2z in I. For every
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element v in L,(@) we then have Awu+u * xel, whence {(lu+wu *x, f)
= {(u, Af+a * f> = 0, which implies Af+x *f = 0 a.e.

2. Now we are going to prove that L,(G) is symmetric if and only
if the functions in the class F have W-T-property.

It is well known (cf. [5], p. 357) that if A is a Banach *-algebra with
the unit element, then for every left ideal I there exists a normalized
positive functional ¥ such that {z, F) = 0 for # in I. However, it is
not known whether this is true for symmetric Banach *-algebras without
unit, although this is the case if I is regular. For L,(G) we have

LeMmMA 2.1. If L,(G) is symmetric, then for every regular left ideal I
in L,(Q) there exists a continuous mormalized positive-definite function ¢
such that

(2.1) {wey o> =0 for x in I.

Proof. Since I is regular, there exists an ideal I' in A(G) containing I
and an element e+y with y in L,(G). Let & be a positive normalized
functional on A(G) which annihilates I’'. Clearly, @ does not annihilate
L,(@), since {y, ®> = —1. Therefore there is a continuous normalized
positive-definite function ¢ on @ such that @ = (1, ¢). Since I < I' n L, (@),
we have <{z,¢> =0 for z in I.

Remark 2.2. The set of normalized continuous positive-definite
functions which satisfy (2.1) is of course *-weakly compact and convex,
and therefore, by the Krein-Mil’man theorem, it contains extreme points,
which turn out to be extreme in the set of all. continuous normalized
positive-definite functions. In fact, if ¢ = ¢, + ¢, and ¢ annihilates I,
then (z**x,¢,> = (&**x,p,> =0 for all # in I and hence, by the
Cauchy’s inequality, |{(z, ¢,>| = |[{z, @»| = 0.

Similarly, the existence of a continuous normalized positive-definite
function in g(f) implies the W-T-property for f.

THEOREM. L, (@) is symmetric if and only if every fumction f in F
has the W-T-property.

Proof. Suppose L,(G@) is symmetric and feF. By proposition 1.1,
the left ideal

I, = {xeL,(@): <a*z,f) =0 for all a in L,(G)}

is regular. Consequently, Lemma 2.1 implies that there exists a conti-
nuous extreme normalized positive-definite function ¢ such that (xz, ¢)
=0 for # in I,. |

To prove that fe W-T, it suffices to show that the function ¢ belongs
to the set S(f). To see the latter, observe that if this were not the case,
then, by the Hahn-Banach theorem, there would exist ¥ in L, (&) such
that <y, ¢> =1 and {(y,f*d) = 0 for all a in L,(G@). But the last equality
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means, by the definition of I,, that y is in I, so <y, ¢) = 0, which is
a contradiction.

Now suppose that L,(G) is not symmetric. Then there is an element
2 in L,(G) such that e+ a* * x is not invertible in A (G). Thus, by propo-
sition 1.2, there is an f in F such that

fHe**z+f =0 a.e.

If f has W-T-property, then there is a net f*d, in g(f), which
is *-weakly convergent to a continuous normalized positive-definite fun-
ction ¢. Clearly,

frd, +a**x*xf+d4d, =0 a.e. for all y,
whence

(2.2) pt+a**xx*xp =0 a.e.

But, since ¢ is continuous, (2.2) holds everywhere, and this is impos-
sible, because

ple)t+ax**x*gpe) =p(e)+<{z**x,p) =1+ x**2,p)>1.

3. Now we are going to prove several propositions which describe
functions in F. |

A function f in L (@) is called finitely dimensional if B(f) is a finite-
-dimensional linear space.

Note first that if f is finitely dimensional, then f is continuous and,
moreover, S(f) is simply the linear span of finitely many translates of f.
In fact, if {¢,} is a sequence of approximate units in L, (@), then, for each y,
f * e, is continuous and belongs to f(f). Clearly, {f * ¢,} is *-weakly con-
vergent to f but since all topologies in a finitely dimensional linear space
are equivalent, {f * ¢,} converges to f uniformly, and so f is continuous.

PrROPOSITION 3.1. Every finitely dimensional function f (in L (G))
belongs to F.

Proof. Let f be a finitely dimensional function and let f,,..., f,
be a basis for (f). Then

n

£ = 1lts) = D ai(s)f (1)

i=1
Note that

n

(3.1) f(8) =f*(e) = D a;(9)file),

=1

(3.2) axf(s) = [a@)f(t " s)dt
G

=2a1-(.8) fa,(t)fi(t‘l)dt =Zai(3) {a, [
in ¢

i=)
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’

Since f;, ¢ = 1, ..., n, are linearly independent, there exist ay, ..., a,
in L, (G) such that
<a7,'7fi> =0; 1<1i,j<n.

But since g(f) is finite dimensional, the functionals a; can be chosen
in L,(@). Let then a,,..., a, belong to L,(G) and

. <aj’fi> =0y, 1<1,j<n.
Putting

U = Zfi(e)an

note that {u, f;> = f;(e), whence, by (3.2),

n

w* f(s) = ) ai(s)fi(e) = f(s).

i=1

PRrROPOSITION 3.2. Let G be a compact group. Then feF if and only
if [ is finitely dimensional. '
Proof. If @ is compact, then for a in L,(G@) the operator

T,: L,(G)>f—>a=*fel (G)

is compact. If feF, then w * f = f for each u in L, (@), which means that f
is an eigenvector with eigenvalue 1 of the operator T,,. Clearly, for each s
in @, (T,f)’ = T,f°, whence f° is also an eigenvector with eigenvalue 1
of T,. Hence, the space spanned by right translates of f is contained in
the eigenspace corresponding to the eigenvalue 1 of T,, which is finitely
dimensional, since T', is compact.

4. Now turn to the functions f which have the Wiener’s Tauberian
property (symbolically, fe W-T).

In virtue of Theorem 1, there are functions f (even in F) which do
not have the W-T-property if only L,(G) is not symmetric. We suspect
that the symmetry of L,(G@) implies that every L. (G)-function has the
W-T-property (L, (G)e W-T) but we are unable to prove it (P 746).

The following proposition with an easy proof is very useful in appli-
cations:

PROPOSITION 4.1. If feL (@) and aeL,(G), then f* acW-T implies
feW-T.

Proof. If a net {f * a * a,} is *-weakly convergent to a continuous

positive-definite extreme function ¢ and b, = a * a,, then the net {f * 13,.}
S . .
is convergent to ¢, since a*a, =a *a,.
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ProOPOSITION 4.2. If feL,(G) N Ly(@), then fe W-T.

Proof. Since f*f?" =f=*f~ and f*f~ is positive-definite (cf. [4])
and continuous, the result follows by remark 2.2.

ProrosiTION 4.3. If G i8 compact, then L (G)e W-T.

Proof. By proposition 4.2.
In virtue of proposition 4.3 and Theorem 1 we have

COROLLARY 4.4. (van Dijk). If G is compact, then L,(G) is symmetric.

LEMMA 4.5. If G is a compact group, G a dense subset of @ and f, g are
continuous functions on @, then f * g is the limit of a uniformly convergent
sequence of linear combinations of functions f, t<G.

Proof. Without loss of generality we may assume that g is real
non-negative and [g(t)dt = 1. Since @ is compact {f’: te@} is a condi-
tionally compact set in C(@) and the set

C = conv{f': te@}~ = conv{f’: teG}-
is (strongly) compact in C(@). Consider the function
F: Gat—fieC.

Clearly, F is strongly continuous, and since C is compact, it is Bochner
integrable with respect to any probability measure on G (ef. [6]). But

frg=[F@g@")dteC,

the last inclusion being an immediate consequence of the definition of
the Bochner integral.

PROPOSITION 4.6. If f is an almost periodic function on a locally compact
group @, then fe W-T.
Proof. By the definition, f is an almost periodic function if the set
A = {f': teG}

is relatively compact (in the norm topology) in L (G).
Let @ be the group of operators on the compact set 4. Consider

T,: A>g—>g°ecd.

Since [|¢°]lc = l9lls T i3 an isometry and, consequently, G is a rela-
tively compact group in the metric

o(T,, T,) = max |Tsh —Tyhlly-

Let G be the completion of & in ¢ and a be the homomorphism
a: Gas—»> T,e@.

Let H = kera. The function f is constant on the cosets sH = Hs.

19 — Colloquium Mathematicum XXIII. 2
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Since
IF@)—f (&) < Iff —Flloo < 0(T}, T),

the function defined by f(T,) = f(t) is uniformly continuous on a dense
subset @ of G and, consequently, it extends to a continuous function
f on G.

By Lemma 4.5, the positive-definite function f * f~ on G is the limit
of a uniformly convergent sequence of linear combinations of right-trans-
lations of f by the elements of G. This remains true for the positive-
-definite function ¢ = f * f~|@ and thus g o a is a positive-definite function
on @ belonging to the uniform closure of linear combinations of right
translations of f. '

5. In this section we prove a few facts on preservation of the prop-
erties W-T, F and the symmetry of L,(G) under taking homomorphic
images and subgroups. We start with the following remarks.

Let G be a locally compact group, H a normal subgroup of G and
let

a: @ —>G[H

be the natural homomorphism. Let, further, the measures ds, dh, ds on
G, H and G/H be adjust in such a way that

[a(s)yds = [ [a(sh)dhds.
& G/H H
The homomorphism « determines a homomorphism
n: Li(@)sx %, 2L, (G/H)
defined by

#(sH) = [ @(sh)dh.
H

To see that » is “onto”, one can use a well-known fact;, (cf. [2]) that
there .is a continuous non-negative function on G such that

[y(shydn =1.
H

Then for each xeL,(G/H) the function z(s) = x(a(s))y(s) is in L, (G)
and 7 (2) = 2. The adjoint mapping %*: L, (G/H)— L, (@) is then, clearly,
given by

n*f(s) =foa(s), seG.

LeMMA 5.1. For any f in L., (G/H) we have
B(n*f) = n*B(f).
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Proot. Clearly,
(n*f)e(8) = n*f(st) = fo a(st) = fla(s)a(®)) = n*fopn(s),

where ¢, $e¢@, which means that #* intertwines right translations. Since #
is onto, n* commutes also with the *-weak closure (in L, (G/H) and L. (G),
respectively), and this completes the proof.

PrOPOSITION 5.2. If feL (G/H) and n*f has property W-T, then f
has property W-T.

Proof. Let feL,(G/H). Then n*feL, (@) and, by assumption, n*f
has property W-T. Hence, by Lemma 5.1, there is a positive-definite
continuous normalized function ¢ in g (n*f) = n*B(f). Let ¢ = n*¢p = o a
with @ef(f). Clearly, ¢ is a continuous positive-definite normalized func-
tion on G/H, and this completes the proof.

LEMMA 5.3. We have

n*: F(G/H) 2, F(@).

Proof. In fact, let feF(G/H). By the definition, » * f = f for some u
in L,(G/H). Let zeL,(G) and nx = u. We claim that x * 9*f = 5*f, which
means that n*feF(G@). In fact, for y in L,(G) we have

Yy n*fy =y *x,n*f) =y *u, f) =y, ) =y, n*f.

ProrosiTioN 5.4. If L,(@) is symmetric, then so is L,(G[H).

Proof. We prove that every function f in F(G/H) has property
W-T. In fact, by Lemma 5.3, n*fe¢F (@) and, by Theorem 1, it has prop-
erty W-T, since L,(G) is symmetric. Consequently, by proposition 5.2,
f has property W-T.

PROPOSITION 5.5. Let H be a closed subgroup of a locally compact
group Q. If every function f in L. (G) has property W-T, then L,(H) 18
symmetric.

Proof. We begin with three easy facts the proofs of which are rou-
tine:

(i) If » is a continuous function with compact support on G and if
¢eL, (H) and

p(t) =@ *ult) = [p(h)u(h 't)dh,
J .

then ypeL (G) is a continuous function.
(ii) If zeL,(H), ¢ is a bounded continuous function on H and u is
a continuous function with compact support on G, then

(z*@)*u(®) =zx*(p*u)(®.
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(iii) If ze L, (H), w is a bounded continuous function on @ and a¢ L, (G),
then

(2 *p)*xd(t) =2~ (y*4)(?).

Now suppose to the contrary that L,(H) and, consequently, 4 (H)
is not symmetric. Let e+ «* * x, veL,(H), be an element not invertible
in A(H). By proposition 1.2, there is a function ¢ in F(H) such that

pt+a**z*rp =0,

Let » be a continuous function with compact support on G and let
v = ¢ * u. Clearly, yeL,(G) and

ptarrgry = (pta*x*rx*xp)*ru =0.

By assumption, y has property W-T and, consequently, there is a net
{a,}, where a,eL,(@), such that y * d, is *-weakly convergent to a con-
tinuous normalized positive-definite function ¢,. By (iii), for every y
we have

0= (ptartrzry)ra,=ypra,ta**a*(pr*ad),
whence
Po+a* * @ * @y = 0.

But the restriction of ¢, to H is a positive-definite normalized conti-
nuous functions on H, whence

@ole) +a* * x * pg(e) = po(e) +<{a* *z, ) > 1,

which is a contradiction.

6. The following problems seem to remain open. Let H be a closed
subgroup of G.

1. If L,(G) is symmetric, is then L,(H) symmetric? (P 747)

2. If f is a continuous bounded function on G and feW-T, is it true
that f|H eW-T (relatively to H)? (P 748)
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