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GENERALIZED P, LATTICES OF ORDER o*

BY

T. TRACZYK aAxD W. ZAREBSKI (WARSZAWA)

In 1964, the first author introduced in [6] the notion of P,-lattices.
Epstein and Horn [1] investigated the theory of P,lattices in detail
and they used this concept in searching for some new important generaliza-
tions of the Post algebra of finite order. In this way they discovered
P,-lattices and P,-lattices.

The aim of the present paper is to show that hypothesis of fixed
finite order in the theory of P,-lattices can be widely replaced by much
weaker one. In a separate paper we will study generalized P,-lattices
and P,-lattices.

1. Preliminaries. Let A be a bounded distributive lattice. The least
and the greatest elements of A will be denoted by 0 and 1, respectively;
xVUy and xny (sometimes xy) will stand for the join and the meet of =
and y, respectively, in A. By the center of A we understand the sublattice
B of all complemented elements of 4. The complement of ae A, if it exists,
is denoted by @. The greatest element z¢ A such that xz < y, if it exists,
is denoted by # —y and it is called a relative pseudo-complement of =z
with respect to y. 4 is said to be a Heyting algebra if x+ —y exists for
arbitrary #, ye A. A Heyting algebra A is said to be an L-algebra if

(# >y)U(y >o) =1 for all #,yeA.

A bounded distributive lattice A is called pseudo-complemented if
T# =& - 0 exists for every we A. A is a Stone lattice if the identity
@V "] ¢ =1 holds for each e A [2].

The greatest Boolean element z of a bounded distributive lattice A
such that 2z < y will be denoted by = =y. A lattice A is called a B-algebra
if # =y exists for all #, ye A. A B-algebra is said to be a P-algebra if

(x=>y)V(y=>x) =1 for all ¢,ye A.
These definitions are in [1]. The identity

»=>(yUz) = (& =>Y)U (d=2)
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holds for all @, y, z in P-algebra. Similarly,
x—>(Yyuz) = (& > Y)Y (2 - 2)
holds in an L-algebra.

2. P,-lattices of order w*. Let A be a bounded distributive lattice
with the center B. Let

(2.1) 0=60<61<...<6m=1

be a countable chain of elements of A. {4 ; (¢;)<i<o, 18 52id to be a Py-lat-
tice of order ot if, for every xe A, there exists a monotonic sequence
@, > 3y = ... of elements of the center B such that

(2.2) €xr = U &;6;.
=1
Then (2.2) is called a monotonic representation of x. A Pg,lattice
{A4; (6;)oci<ny I8 called an FPy-lattice of order ot if, for every xe A, there
exists a monotonic representation (2.2) such that

(2.3) ®, =, =... =2, for some n=>1.

' In both cases (¢;)o<i<o 18 called a chain base of A. For the sake of
brevity, if no confusion is possible, we will write a P,-lattice 4 of order
ot instead of a Pg-lattice (4 ; (6;)ocicoy Of order w*, and an FP,-lattice
instead of an FP,-lattice of order w*. The following lemmas will be useful
in the sequel.

LEMMA 2.1 (see, e.g., [4]). If, in a lattice A, there exists the least upper

bound |J a, and there exists a — c for every ce A, then there emists the least
teT

upper bound J (ana,) and the following identity holds:

teT
anUa = U (anay).
teT teT

LEMMA 2.2 (see, e.g., [1]). If A is a bounded distributive lattice, and
b belongs to the center of A, then for every ce A there ewists, b — ¢ and

(2.4) b —>c¢ = buc.

LeMMA 2.3 (see [6]). If A is a Py-lattice of order o™ and (2.2) i8 a mono-
tonic representation of m», then

k
(2.5) xe, = U »,6; for every k> 1.

=1

LEMMA 2.4. If A is a Pylattice of order ™, then

o0
Ue,;=1.

fml
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The proof is obvious.

LrMmA 2.5. If A is an FPylattice, then each ®e A has a finite mono-
tonic representation of the form

n
(2.6) z = »e;Un,, where n depends on x.
i=1
The main result of this section is the following
THEOREM 2.1. Let A be a Pgylattice of order o™ and let 2, >3, > ...
be a monotonic sequence of elements of the center B of A. Then the least upper
bound on the left-hand side of formula (2.7) ewists if and only if the greatest
lower bound on the right-hand side ewists. If they both exist, the equality

(2.7) iUI v6; = Q (@;Ve;_,)

holds. In the case of an FPylattice formula (2.7) reduces to

n

(2.7%) U 26,0z, = ﬁ (®,0e;_,).

i=1 =1

Proof. Suppose that the left-hand side of (2.7) exists and that

(i) » = G .’v,-e,-.

i=1
For a fixed 7 we have
@ if 1<
(ii) ®;6; < g ) J.\ ]
ej_l ]f J > '&.
Hence @6, < o;0¢;_, for all 4,j> 1, ie. s < a;0e_, forj =1,2,...
Now let 2 < @;Ve;_, for j =1,2,... and for a certain ze A. We have
to show that z < #. To do this let

o0
2 = Jze
k=1
be a monotonic representation. Since z,¢, < z < @;Ve;_; for all j and F,

we have
k
Zeer < @, Y U w6
i=1
by induction argument. Therefore,

K
e = (e e < Uze, <o for k=1,2,...
im1

Consequently, 2z < @, i.e. (2.7) holds.
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Let us now suppose that, for a given monotonic sequence z, > x, > ...
of elements of the center B, there exists the greatest lower bound

ﬂ (w;Ve;_,)

By virtue of (ii),
(iii) e, <y fori=1,2,...

Suppose further that, for a certain ze¢ A, the inequality ze, <2
holds for ¢ = 1,2, ... It remains to show that y < 2. Since, by induction
argument,

k
(iv) er () (w;Ve,_)) <z for k=1,2,...,
t=1
we have
k
ey < e ) (r;Ve,_,) <z for every k.

=1

Using a monotonic representation

= U Yt

k=1
we conclude that

Yl = (Yrer)er <ye, <z fork=1,2,...,

i.e. ¥y < 2, and this completes the proof.
CoroLLARY 2.1. If

(<]

x = U e and ¥y = U yse¢

i=1 j=1

are monotonic representations of elements » and y, respectively, in a Py-lattice
A of order w™, then

sy = U (2,Vy)e; and a0y = H(wiﬂyf)ei
1=1 =
are monotonic representations of xVy and xny, respectively.
Proof. The former identity is obvious. In order to prove the latter,
let us put 2 and y in the dual forms

) oo

@ =) (%Ve;_,) and y = () (yVe_,)

i=1 j=1

in virtue of Theorem 2.1. Then the following inequalities are obvious:

zny < (2;Ve;_)N(y;Ve;_,) for i =1,2,...
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On the other hand, if, for a certain ze A4,
2 < (2;Ve;_)n(y;Ve;_,) for ¢t =1,2,...,

]
then 2z < # and 2z < ¥y. So we proved that

any = () (@) n(3,08,,)].

=1

Therefore

zoy = () (2;9:,Ye;,_,) = U 2;9;¢;.

=1 t=1
3. Pseudo-complements in a P -lattice of order w™ . Let A be a P-lattice
of order w™. In this section we study the following questions:
1. Under what conditions is A a Stone lattice?
2. Under what conditions is A an L-algebra?
3. Under what conditions is A a P-algebra?
LevmaA 3.1. Let
x = D z;e; and Yy = G Y;6;

i=1 j=1

be monotonic representations .of xe A and ye A, respectively.

(i) Assume that e; -y exists for all i > 0. Then © —y exists if and
only if the infinite meet

0 Bl 9]
exists. If both ewist, then
(3.1) 2>y = () FU(E > 9] |
(ii) Assume that & — e; ewists for all i. Then x — y ewxists if and only
if the infinite meet

0@ > 6]
exists. If both ewxist, then
(3.2) 0>y = )Y@ > 6,1
Proof. (i) Suppose
! 2 = N [FY(e > 9)]

=1
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exists in 4. We show that # — y exists. Let | ;e; be a monotonic re-
presentation of u = zz. Since =1

Ul S UK 2SS TV (e —>y) and w6 < 6
we have
ue; < [7;V(e; > y)le, < 7;e,vy for + =1,2,...

Hence ue;; <y and, therefore, by Lemma 2.3,

i

U6 = U 0,0 = Ug€; Um,e, =uiije U wwe <y fori=1,2,...
J=1 j=1

So we proved that v = zz < y.

Now suppose that aw < y for a certain we 4. Evidently, x;e,w < aw
< y for all <. Then w < w;¢; — ¥, i.e. (see [1], Lemma 2.6) w < Z;U(¢; = ¥)
for all ¢, and that is what we had to show: w < y.

In order to prove the converse implication, let us assume that # — y
= z exists. We show that (3.1) holds. In fact,

o>y x>y =7,V —>y) for every <.
On the other hand, the inequality w < z;U(¢; - vy) = x,;¢; -y for
a certain we A and every ¢ yields wwz;e; < y for every ¢. Hence
i

wre; < 'wa‘e, y, ie., wg<aoe—y forj=1,2,...

Therefore, using a monotonic representation

o0
= |J w;e;,

i=1

we get w;e; < ¢ — y for all < and, consequently, w < # — y. This completes
the proof of (i).
Similarly, but using the dual representation (2.7), one can easily
prove (ii).
LeMMA 3.2. Let us assume that
=Uwze and y = ye -
i=1 J=1
are monotonic representations of xe A and ye A, respectively.
(i) Assume that e;=y ewists for i =1,2,... Then =y exists if and
only if the imfinite meet
2 = NP [ZU(e;>y)]
=1

exists in the center B of A. If they both ewxist, the identity @ =y = 2z holds.
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(ii) Assume that x =e; ewists for ¢ = 0,1, ... Then o =>y exists if and
only if the infinite meet
o
2= N2 [y;u(@=e_,)]
i=1
exists in B. If they both ewist, the identity @ =y = z holds.
The proof is similar to that of Lemma 3.1 and will be omitted here.

Observe that part (i) of Lemma 3.1 has the following important
consequence:

COROLLARY 3.1. Assume that in A there ewists the pseudo-complement
Tle; for ¢ =1,2,... Then the pseudo-complement ~|» exists for an xe A
if and only if the infinite meet

p (%L Tey)

=1

ewists. If both ewxist, then

(3.3) =) (Z;V7e).
i=1

LeMMA 3.3. Let A be a P-lattice with the center B.
(i) If ¢; — ¢; ewists for certain i, j, then

(3.4) 6,— -> Gj = Gj Uci]-, @Uhere c,-je .B.

In particular, ~le;e B, if it emists.
(ii) If e;=e¢; ewists for a certain pair i, j, then e; — ¢; ewists and

(3-5) €; > ej = ej U(é‘ =>6j) .

Proof. (i) It is obvious for ¢ <j. For ¢ > j, let

oo
€; —> Gj = kL) cﬁ’k 6
=]

be a monotonic representation. Then Lemma 2.3 yields
i
kLJ cij'kek = (e,- - 6j)6i < ej.
=1
Therefore,
(65Ucy )€ = €;Ucy 16, < €, 1.8 €;Ucy ; < € — ¢;.
On the other hand,
2 for k<1,
Cij kO S :
c’ij,i for k> 1.

38 — Colloquium Mathematicum XXXIV.2
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Thus ¢; — ¢; < ¢;Ucy ;. In this way (3.4) has been proved for ¢, = ¢ ;.
In order to prove (3.5) let us observe that

If, on the other hand, a certain #¢ A has a monotonic representation

(-]

= |J e,
k=1

and x¢; < ¢; holds, then w6, <e¢; for k< i. For k > 4, we have o, < @;
< ¢; =¢;. Consequently,

w6, < ¢;U(e; >¢;) for every k, ie., ® <e¢;U(e;=¢)).

In this way we proved (3.5).
THEOREM 3.1. Let A be a Pglattice of order w*. Then
(i) A is a B-algebra if and only if it is a P-algebra.

Let A be an FPglattice. Then

(ii) A is a Heyting algebra if and only if it is an L-algebra;

(iii) A <8 a Heyting algebra if and only if e; — ¢; exists for all 1, j;

(iv) A is a B algebra if and only if e; >e¢; emists for all 2, j.

Proof. The ‘“only if’’ part of statements (i) and (ii) requires a proof.
Let B be the center of A and let

00 [ <]
e =Uwme and y=)ye
il i=1

[

be monotonic representations. By Lemma 3.2 (i) we conclude that

(*) ®=>y = Q‘”’[E.-u(e,- >y)], Y=o = Q‘B’[g,u(e,- =>)].

The inequalities

o, < e¢=>w and Y;<e=>Y
imply
(*+) [Z: V(e =y) 1VU[F;V(e; =) ] = (Z;Vy,) U(g;Va;) = 1
for all positive indices ¢, j. In fact, T,Us; =1 for ¢>j, and y,Vy; =1
for ¢ < j. (*) and (**) easily imply that (# =y)U (y =2) = 1, which proves (i).
We omit a similar proof of (ii).

In order to prove (iii) let us suppose that e; — ¢; exists for all ¢, j
and that 4 is an FP,lattice. If

2= aoe; and y=Jy,e
j=1

{ml
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are monotonic representations, then, by Lemma 2.5 and Theorem 2.1,
there exists a positive integer m (large enough) such that

m m
® = H%%U% and y = ﬂ(%ue"‘)'
The remaining part of the proof easily follows from the fact, proved
in [1], that

w,-ei - (ijGk) = Eiuij(e.t —> ek).

The proof of (iv) is similar.
Let A be a Pylattice. Then

(o]
o = U e,
i=1
is said to be the highest monotonic representation if o; < @; (1 =1,2,...)
for any monotonic representation

o ’
» = U w;e,-.
fml

The lowest monotonic represeniation is defined analogously.

THEOREM 3.2. If a Py lattice A of order o™ is a B-algebra, then each
®e A has both the highest and the lowest monotonic representations, and

(3.6) U (¢ = @)e; is the highest representation of =,
fm]

(8.7 U (® = €;_,)¢; is the lowest representation of .
© gl

Proof. Let us consider a monotonic representation

o = | w;e.
i=1

Observe that #; < ¢; = @ and (¢; = )e; < #. Therefore, if (¢; = )¢,
< 2 for a certain z¢ A and for all 4, then x;¢; < 2 for all 7, as well; that

is, # < 2. So (3.6) is proved to be true for an arbitrary ze¢ A.
In order to prove (3.7) we will use the dual representation (see (2.7))

od

r = (

fom

®;Ve;_y).

—

Since » < x;Ve;_,, we have

& => ey = (w;6,_,) = 6;_, = 7.
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Then

(%) ®» =>e6_,<x; for all .

It remains to show that (see (2.7))

(++) o= ﬁ [(@ = e13) Ves_y]-

To achieve this let us observe first that
¢ =a(@ =>e_)VnB(® = ¢_,) < ¢;_ V(@ =>¢_;) for all 4.

On the other hand, if 2 < (# = ¢;_,)Ve,_, for all 4 and a certain ze A,
then z < #;Ve;_, by (%), i.e., 2 < @, and so (*#*) is proved.
It is worth noticing and easy to see that the operator D; defined by

Diz) =¢ =2 fori=1,2,...

is a morphism in the category of bounded distributive lattices D,,. Using
this notation, we can rewrite the highest monotonic representation of @
in the form

@ = U Dy(w)e;
i=1
(for the operator D; in Post algebras, see, e.g., [3]).

THEOREM 3.3. Let A be a Pgylattice of order o, and let the center B
of A be a o-regular sublattice of A. Then A is a Stone lattice if and only if
it i8 pseudo-complemenied.

Proof. Let A be pseudo-complemented and @ A. Then, by Corol-
lary 3.1,

Tlo = N (Z,V &)

=1

for a monotonic representation

(- -]
¢ = o;e;.
fm=l
But Tle; is Boolean in virtue of Lemma 3.3. By the assumed regularity
of the center B, "lwe B. Thus “jwv |1 |v =1, i.e.,, 4 is a Stone lattice.
This completes the proof, since the converse implication is obvious.
If the center B is not o-regular, the pseudo-complement ™|z need
not be Boolean. In this general case we have only the following theorem:
THEOREM 3.4. Let A be a Pgy-lattice of order w™* with the center B. Let
u8 consider the following conditions:
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(1) A 18 a Stone laitice;

o
(2) for every me A, there ewists a monotonic representation o = \_ b;e;
o {m]l
such that b, < ¢, for any monotonic representation » = | ¢;e,;

(8) @ = 0 exists for every ze A; b=

(4) Tle; ewists for every i.

Then (1) implies (2) and (2) implies (3), and (3) and (4) are equivalent.
If A is an FPylattice, then each of the above conditions is equivalent to

(B) A is pseudo-complemented.

Proof. (1) implies (2). Since ~|oU ™| " |o = 1 for every « in the Stone
lattice A, we have “lwe B, 7| |we B, and T| |# > x. Let

o0

z = %6
i=1

be a monotonic representation. Then, by Lemma 2.1,
e=0n"1"l® = 1rU (B0 71 @) 6.
-]
By the same Lemma 2.1, ¢;# = 0, i.e., ¢; < ~|o. Hence

= 1> 2,n" 1w =b,.

(2) impli;as (3). Suppose that #z = 0 for a certain ze B and that (2)
is satisfied. Then

C =0z = U (Ebf)&i
f=1

is a monotonic represegta,tion. Hence 2b, > b, by (2), and this means that
z < b,. Consequently, b, = 2 = 0.
(3) implies (4). In virtue of Lemma 3.3, Tle; exists and

Tle; = €g —> €y = ¢; => ¢,.

(4) implies (3), almost trivially, by Lemma 3.3.

The remaining part of the proof will be omitted here. The reader
may follow the lines of the proof of the similar Theorem 2.8 in [1].
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