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COMPACT CONVOLUTION OPERATORS
BETWEEN L,(G)-SPACES

BY

G.CROMBEZ axp W. GOVAERTS* (GENT)

1. Let @ be a unimodular locally compact Hausdorff group, and
L, =L,(F) (1<p< oo) the usual corresponding spaces with respect
to (left and right) Haar measure dy. For a complex-valued function g¢
on @G and a € @, the left and right translates of g are defined by

(9)(®) = g(a~'®) and (g.)(2) = g(wa™"),
respectively.

Let 0 be an element of L,. The element 6 is called lefi almost periodio
(La.p.) if the set {,0: a €@} of left translates is relatively compact
(i.e. totally bounded) in the space L, with its usual L,-norm. An analogous
definition is valid for a right almost periodic (r.a.p.) element of L,.

The space L, with the convolution mapping (f, 6) - f«0 of L, x L,
into L, is a left Ba.na.ch L,-module. In particular, a ﬁxed bel, mduces
a linear operator H, from L, into L, by means of

[Hy(£)1(@) = (fx0)(2) = [ flay™)0(y)dy (feLy).
G

Put b(L,) = {f € L,: |Ifll, <1}. Then the operator H, is said to be
compact if H,(b(L,)) is relatively compact in the Banach space (L, |- l,).

2. We want to prove the following theorem:

THEOREM. H, is compact iff 0 18 left almost periodic.

In the proof we will use the following lemmas:

LEMMA 1. If {0:}:c4 i3 @ net in L, consisting of l.a.p. functions, and
{6:}1c4 conwerges in the L,-norm to 0 € L,, then the limit 0 is also l.a.p.

The easy proof is omitted.

LEMMA 2. If G is compaot, then every 0 in L, (1<p < oo) is l.a.p.

* The second-named author was supported by the Belgian “Nationaal Fonds
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This follows from the fact that, for fixed 6 in L,, the mapping 2 — .0
of @ into L, is continuous.

LeMmmaA 3. If G is not compact and 6 is l.a.p. in L, (1L < p < oo), then 6
18 the zero element of L.

Proof. Let 0 € L, be left almost periodic and let ¢> 0 be given.
There exist a finite number of points a,, a,,..., @, in G such that, for
each b € G, a point a; (¢ € {1, 2, ..., n}) may be chosen for which

(1) "bo _aiellp <eé&.

n
K being a compact set in @, the set (| a;K)K~' is compact.- By

i=1
assumption, a point a € @ may be found such that

a¢ (G o, K)K;

t=1
this also means that

(aK)n (LnJ a,K) =0.

=1 i
From (1) it follows that to this element a there corresponds a point a;
(je{l,2,...,n}) such that

”(ae —a]ﬂ) ZaK”p <e
(xox denotes the characteristic function of aK). Using this result we obtain
(2) 16l = Nlabllp < laO%akllp + laBxanaxllo < &+ lla;fXaxllp + 0Xa\axllp

< € + ”ajex(}’\ajK”p + "aGXG\aK"P ¢
But

lafxenaxlls = Nl —1(a0%enax)llp)

and the function in the second member is equal to Oy x. The same may
be done for ajexg\ajx. Hence from (2) it follows that

(3) ”0”p < 8+2 ||0XG\K”p-
Choosing finally the compact set K such that

[ 16(2)?|dw < &7
G\K

we obtain [|6]|, < 3¢ from (3). Hence 6§ = 0 in L,,.

Proof of the Theorem. Suppose that H, is compact. If fe b(L,)
and a €@, then |,fll, = |Ifll, and ,(f*0) = ,f*0. So

{a(f%0): a €@} = {,f+0: a G} = {gx0: g e b(L,)},
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from which we conclude that fx0 is l.a.p. for each f € b(L,). Since

f
1£1lx

f*0 is lLa.p. for each f e L,.

In L, there exists a symmetric approximate unit; this means that
there exists a net {¢;};.4 in L, such that ¢;(z™') = ¢;(x) for all 1 e A and
ved, |6l =1, and

lim|le;*f —f|, = lim||f«e; —fl, =0 for each fe L,.
i i

eb(L,) for felL,,

For 1 < p < o0, it is known (see [3], p. 273) that
lim [le,+6 — 6], = 0.
A

Since each ¢, 0 is L.a.p., it follows from Lemma 1 that so is 6.
For p = oo it follows easily, using the equality

[f@)(ex6)(a)dw = [ 6(a)(6,f)(@)ds (f e Ly),
G G

that {e,*0},.4 converges to 6 for the w*-topology of L, . Hence a subnet
of {e;*0},.4 converges to 0 in (L, ||*[lw). Using again Lemma 1, we con-
clude that 6 is la.p.

To prove the converse, we first suppose that 6 is La.p. in L. Let
¢ > 0 be given. Since 6 is also r.a.p., there exist a finite number of points
a5y @y, ..., &, in G such that, for each a € @, an element a; (i € {1, 2, ..., n})
may be found for which

&
@ 19,20, slle < 5

For each a € G and each feb(L,) we have |(f*0)(a)| < ||0]l,. Hence
the set {(f+0)(a,), (f*0)(ay), ..., (f*0)(a,)}, where f runs over b(L,),
is & totally bounded subset of C" (i.e. the n-dimensional complex space).
So there exist a finite number of functions f, f, ..., f» in (L) such that,
for each f € b(L,), an element f; (j € {1, 2, ..., m}) may be found for which

(5) |(f*0)(ai)—(fj*0)(ai)|<§ for all s {1,2,...,n}.

From (4) and (5) we easily see that .

[(f%6)(a) — (f;+0)(a)] < e.

Hence ||f*6 — f,*enw < &, which means that the set H,,(b(Ll) is rela-
tively compact; so H, is a compact operator,
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In view of Lemmas 2 and 3 the proof of the converse implication will
be completed if we show that, for compact @, each 6 in L, (1 < p < o0)
induces a compact H,. Using the results and notation of [3], § 27, we
denote by #(@) the set of all continuous irreducible unitary represen-
tations of @, by X the set of equivalence classes of the representations,
oceZ, and by U a representation in the set o. If uff is a coordinate
function for U\, then it belongs to L,. For f € b(L,) we have

(6)  (frufd)(x) = f F@) 4D (v z)dy = 2u‘°’(w>( [f)u () dy),

r=1 G
where d, denotes the dimension of the representation space H, of U,
Since

| [T ay |
G

is bounded for all f € b(L,), for given & > 0 there exists a finite number
of elements fy,fs,...,f, of b(L,) such that, for each feb(L,), an f;
(e {1,2,...,n}) may be found for which

I ff(y)u§‘,”(y“)dy— fft(?/)“}?(?/‘l)dy|< e.
a & 4

It follows that each operator, defined by each term in the last member
of (6), is compact. Hence every uf induces a compact operator in L,
and so do their linear combinations, which form a dense set 7' in C(@),
and hence in L, (when ¢ runs over X). Since the operator norm of H,
does not exceed ||0]|,, T is dense in L, also in the operator norm. Hence
every operator H, is compact as & uniform limit of compact operators.

Denoting by AP the set of almost periodic elements of L, we obtain
from the foregoing the following result:

OOROLLARY 1. Leét 0 € AP; then H, is compact, and thus f«0 € AP
(f e Ly).

This means that L,» AP = AP. The closure in (L, ||*ll.) of L*AP
is equal to AP, as seen in the first part of the proof of the Theorem. But,
by [3], p. 268, L,* AP is norm closed in AP. Hence L,» AP = AP.

In an Abelian locally compact Hausdorff group @, each multiplier
T: L,(@) > L,(@) is Ly-induced (see [4], p. 68). From the Theorem we
conclude that

COROLLARY 2. A multiplier T: L,(@) - L (G) i8¢ compact iff it is
induced by an almost periodic fumction.

Remark. For p = oo the Theorem gives an extension of a part
of a proposition by de Vito [1].
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