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ADMITTING A METRIC SEMI-SYMMETRIC CONNECTION
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1. Introduction. In a Riemannian manifold M (dim M = n > 4) with a
(possibly indefinite) metric g;; we can consider a metric semi-symmetric
connection with connection coefficients I'; (see [3]) given by

(1) ll'j', =r5'.i+5}'pi_phgﬁ,

where I'% are Christoffel symbols of M, p, is a gradient vector, and p*
= g" p,. Throughout the paper, the operator V; means covariant differentia-
tion with respect to the Riemannian connection, and the operator [}j means
covariant differentiation with respect to the metric semi-symmetric connec-
tion (1). The curvature tensor R*, of I'% and R, of I'% are related by (see

[2)
Rw& = Ruijx — %y Gnk + %nj Gix — Wi §ij + %is Gj»

where o;; is a tensor field of type (0, 2) defined by a;; = V;p;—p; p;+3p. P  g;;
and R,,,-j,, = Gpr R',-,-,‘. Let C’,,,-,, denote the conformal curvature tensor relative
to the metric semi-symmetric connection, i.e.,

1
n—2

R
+ (n—1)(n—2) (9:) 9 — Gin Gnj)s

Clu‘jk = ka - 9y Ry — 9ix th + g Ru —Ghj Ry)

where R, = Ry;g” and R = R, g™.
Adati and Miyazawa introduced [1] the concept of a conformally
recurrent manifold. It is defined as an n-dimensional (n > 3) Riemannian
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manifold whose Weyl conformal curvature tensor

.
Chijx = Ruipx— n_> (9ij Rix — Gix Ryj+ gnk Rij— g Riy)

R
+(n_1)(n_2)(gijghk Gix Inj

satisfies V;Cpj = a;Cyj for some vector field a.

An n-dimensional (n > 3) Riemannian manifold (M, g) is called confor-
mally recurrent with respect to V if the conformal curvature tensor C’,,,-,,
satisfies the condition

(2) [}l Cum = &t Clu'jk

for some vector field 4. If V, C,,U,‘ = 0 everywhere on M and dim M > 4, then
(M, g) is said to be conformally symmetric with respect to V.

The purpose of this paper is to investigate conformally recurrent mani-
folds with respect to V. Namely, we shall find (Theorem 3) some metric
properties of a Riemannian manifold which is simultaneously conformally
recurrent with respect to ¥ and V.

All manifolds under consideration are assumed to be connected and of
class C®. Their Riemannian metrics are not assumed to be definite.

2. Preliminaries. In the sequel we shall need the following lemmas:

LEMMA 1. The Weyl conformal curvature tensor satisfies the well-known
relations

Cln'jk = —Cihjk = _C'u'kj = Cmu"
CriptCumijt+Cpjpi =0, Cyy=Cyy=Cp;=0,
(3) ViCup+V;Cpii+ Vi Crigj
1
i (Gix Chji+9nj Cict + 901 Coaj + Gk Citj + 935 Cox + g Cign),
Where Cijk = V, C'l'jk'
LemMma 2 ([4], Lemma 3). If c;, p; and By, are numbers satisfying
C; Bhijx + Pn Bij + Pi Buiji + Pj By + pi Byiji = 0,
Byiju+ Byji+Buij = 0,  Byjx = Bjxpi = — Bpaj

then each b; = c;+2p; is zero or each By is zero.

LemMma 3 ([2], Proposition 3.1). The conformal curvature tensor relative
to the metric semi-symmetric connection is equal to the conformal curvature
tensor relative to the Riemannian connjection.
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3. Main results.

PrROPOSITION 1. Suppose that M admits a metric semi-symmetric connec-
tion (1) such that

) V1 Copm = 0.
Then
Vi Crjint+ V; Ciin+ Vi Cjiin = (1 = n)(py Cujin+ P; Cuain + P Cyin)-

Proof. Differentiating C‘,j,-,, covariantly and using (1), (4) and Lemma 3,
we get

3) Vi Cxjin = Px Cijin+ Py Crain+ Pi Cogin+ Py Cujur
—(9u Bjin+9j1 By + 91 Buaj+ g Bijn),

where By, = p, C"j;. The last result, by Lemma 1, (5), and contraction with

g, implies C;; = (1—n)B,,, which together with (3) yields

6)  ViCyjint+V; Cuin+ Vi Cyiin
1—n
T h_3 (ix Bhji + 9 Bix+ Gut B + g Bisj+ gij Bus + g Bi)-

Permuting in (5) the indices I, k, j cyclically, adding the resulting equations to
(5) and using (6), we obtain

M B=n)(p; Cuin+ Pi Ciuin+ Px Cijin)
= Gix Bnji+ gnj Bixi + 9t Buj+ 9ni Birj+ gij Bux + g Bijn-

The assertion follows now from (6) and (7).

THEOREM 1. Let (M, g) be conformally symmetric with respect to the
metric semi-symmetric connection (1). Then dim M = 4 or

Pj Buin+ pn Biji + pi Buyj = 0.
Proof. From Proposition 1, by transvection with p', we obtain
P'(V: Cyjin+ V; Coin— Vi Cjin) = (1 =1)(p, P” Cujin+ Pj Bran— Pi Bjn),
whence, in view of (5) and Lemma 1,
)  B—m (/. P Cijin+ pj Buin— P Bjin)
= Gij T — 9nj Toc — Gix Toj+ 9 Tij+ i Buj — pa Bipe

where T;; = p" B;;, = T;;. Permuting in (8) the indices j, i, h cyclically, adding
the resulting equations to (8) and applying Lemma 1, we get

(4—n)(p; Byn+ py Byji + pi Biyj) = 0,
which, evidently, completes the proof.
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THEOREM 2. Let M be a Riemannian manifold admitting a metric semi-
symmetric connection (1) such that

)] Vi ijih = ¥, Cyjin-
Then at each given point of M we have p; =0 or Cyj = 0.

Proof. Differentiating C,‘j,-,, covariantly and using (1) and Lemma 3, we
get

(10) ﬁ1 ijih = ijih — (P« Cljih +Dj Cuint+p: C kjtht+ D ijil)
+9u Bjin+ g1 Buj+ gij Beni + g Bijx.-
Equation (10), together with (9), implies
(11) Pi Cijin+ Pj Cutin+ Pi Cojin+ Pa Cajit = gu Bjin+ g1 By
+91; Buni +9un Bijy -
Contracting (11) with g* and using Lemma 1, we get B;; = 0. Thus
Px Cijin+ Py Cuiin+ Pi Cyjin+ P Ciji = 0.

Setting ¢, = 0 in Lemma 2 and applying the last equation, we easily obtain
pj =0 or Cuj; =0. This completes the proof.

CoroLLary 1. If V,C*; = a,C*;, and V,C", = a,C", and p; does not
identically vanish on M, then M is necessarily conformally flat.

Proof. Let xeM be such that C";,(x)=0. Then, since V,C%;
= @;C"%;, C vanishes everywhere on M. The assertion follows now from
Theorem 2.

PRrROPOSITION 2. Let M be a Riemannian manifold admitting a metric semi-
symmetric connection (1) such that

(12) |°71 Cum =q ij.'m V, th =aq Cuu.-

Then p,C";j = 0 holds everywhere on M.

Proof. If M is conformally flat, then the assertion is trivial. Thus, in
view of (12), we may assume that C,;;, # 0 at each point of M. Equation (10),
together with (12) and Lemma 3, yields

(13) P Cijin+ P; Catin+ Pi Coyin+ Pr Cojit — Vi Cijin
= gu Byn+ 9 By + 915 Bxni + 9in Bijxs

where Y, = a,—d,. This, by Lemma 1 and contraction with g*, gives ¥, C",
= (1—n) By Transvecting now (13) with p*p", we obtain

2pi+¥) T;; = p; Ty+ p; T, + p" p,(Biji+ Byy)).

Now, with the help of the last result we can follow step by step a proof of
Roter (see [4], p. 43) to obtain B;; = 0. This completes the proof.
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THEOREM 3. Let M be a Riemannian manifold which admits a metric semi-
symmetric connection (1) such that conditions (12) hold. Then

(@) piChrijk+ Px Chitj+ pj Chit = 0 everywhere on M.

(b) If (M, g) is not conformally flat, then &; = a;—2p; and p,p" = 0.

Proof. Obviously, we can assume that C # 0 everywhere. Since B;; = 0,
(13) yields

— V1 Chjin+ P Cijin+ Pj Coain+ i Cyjin+ Pn Cijit = 0,

whence, using Lemma 2, we get ¥, = 2p,. Now, with the help of the last
result, we can follow step by step a proof of Roter ([4], p. 44) to obtain our
assertion.

THEOREM 4. Let a Riemannian manifold admit a metric semi-symmetric
connection (1) such that the function p satisfies equation (a) of Theorem 3.
Then

(14) &1 ijih =V ij.'n —2p, iju.-

Proof. Assume (a) holds. Then, in view of Lemma 1, we get B;; = 0.
Hence equation (10) can be written as

(15) % 1 ijih =V, G jih ™ (Dx Cljih +Pj Crin) — (P ijlh + Da ijil) .

Substituting (a) into (15) and using Lemma 1, we obtain (14). This complcfes
the proof.

CoOROLLARY 2. Let M admit a metric semi-symmetric connection (1) such
that p; satisfies (a). Then M is conformally recurrent if and only if the condition
ﬁ‘ hijk = (°1, Chijk holds.
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