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0. Introduction. Let (M, g) be a Riemannian manifold and let 4
be the Laplacian acting on C*-functions on (M, g). Then some results
on lower bounds or upper bounds of the first eigenvalue of 4 are given
in several situations (cf., e.g., [1]-[4] and [7]).

Let (M, g) be a compact orientable Einstein space with constant scalar
curvature 8 = m(m—1)K, where m = dim M > 2. Then the lower
bound of the first eigenvalue 4, of 4 is mK. Furthermore, if (M, g) admits
an eigenfunction f (4f = — mKf) corresponding to mK, then (M, g) is iso-
metric to a BEuclidean m-sphere of constant curvature K (cf. Obata [6]).

In this paper* we prove the following theorem:

THEOREM. Let (M, g) be a compact orientable Einstein space with
constant positive scalar curvature S = m(m—1)K, where m = dim M > 2.
Let B be the minimum of the sectional curvature of (M, g) and assume that
B> 0. Then

(i) there is no eigenvalue A of A such that

' MmEK <A< K+2(m—1)B;
(ii) ¢f B # K, then the first etgenvalue A, of A satisfies
4> K42(m—1)B;
(iii) generally, the second eigenvalug i, of A satisfies
Ay> K+2(m—1)B.

It may be remarked that if (M, g) is a Euclidean m-sphere of constant
curvature K, then the second eigenvalue i, of 4 is 2(m + 1)K = K+
+(2m+1)K.

* This paper was done while the author was a guest at Teohmsche Universitat
Berlin by DAAD-JSPS exchange program.
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The author is grateful to Professors D. Ferus and U. Simon. This
paper is originated by Simon’s paper [8].

1. Proof of the Theorem. Let (M, g) be a compact orientable Einstein
space stated in the Theorem. Let f be a non-constant eigenfunction of A
such that

(1) Af = ‘—lf’

where Af = g7V, V,f = V'V,f, and V denotes the Riemannian connec-
tion defined by g = (g;;). By Obata’s theorem in the introduction, we
study only the case where A > mK. We put

f‘i =V‘f and f‘ij =VIV‘f'
Now we define a (0, 2)-tensor field A = (4;) by

(2) Ay = fy+ Kfgy.
Then we get Vk A‘tj = V kf'ij +.ka gij and .
(3) ViAyVEA" = Vi f;V*fI+ 2Ef*V, Af+ E*mf, f*

= VifyV*f? + (mE* — 2K 3)f,.f*,
where
Vifs Vi = Vil £ VAP — f Vi ViV
By applying the Ricei identity and using the Einstein condition,
the second term of the right-hand side is calculated to be
(4) —fiViVEf = —fIV;V Af+ 2f% (RM* fu + B )

where (R';;;) denotes the Riemannian curvature tensor field (cf. [8]).

At each point # of M, we take an orthonormal frame {E;} such that
each F, is an eigenvector of ( j}‘) at z and let o; be the corresponding eigen-
value. We estimate scalars with respect to this frame {F;}. Then

(5) —fijVj Vidf = }'fjfz'j =1 2 (Ui)z
;

B (Sef) 4 {Semarron
i<j i

i<j
On the other hand, we get (cf. [8])
(6) 219 (B i+ B fui) = —2 ZKtj(Ui— %),
i<J

where K, denotes the sectional curvature for a 2-plane spanned by E;
and E;.
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Next we rewrite f7f,; and f,f*:
(7) ffy = Vi(ff) =V Vif;
= V;(fif—f (Vi Af+ (m—1)Kf))
= V;(fif ")+ (A—mK + K)f, f*,

(8) fuf* = Vil ) —FAf = Vi (ff*) +4f*.
By (7) and (8) we get
(9) fofy = Vi(fif 7+ (A—mK + K) ff)) + (A — mEK 4 K) Af*

= V,Ni+(A—mK + EK)Af?,

where N, (or N, and N4, later) denotes some vector field on M the explic-
it expression of which we do not need. Eliminating f“f,, from (5) and (9),
we obtain

1
2 == V'.Nj s 20
(10) M =Vt T mE T B) =7 ij (0i=0)

Applying (4)-(10), we can write (3) as

. A—K
(11) VA, VEAY = 7, N+ 2 {m_l
i<
Therefore, if A< K-+2(m—1)B, then integrating (11) on M we
obtain V, A,; = 0. Since (M, g) is irreducible by B > 0, A, is of the form
A, = og,; for some constant o, and

Ji+ Kfgy = cgy.
Transvecting the last equation with g7, we get
Af+mKf = meo.

Since f is an eigenfunction, integrating the last equation on M we
get ¢ =0 and A = —mK. This is a contradiction. Therefore, there is
no eigenvalue A1 such that mK < 1< K+2(m—1)B. This proves (i)
of the Theorem. (ii) follows from (i) and Obata’s theorem. And, generally,
we have (lii).

- 2Kij} (0;—0;).
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