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1. Introduction. Let ¢ denote Euler’s function and let ¢ denote the sum of
the divisors function. In [2], Makowski and Schinzel consider the function
o(@(n))/n, showing that
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They ask if a(@(n))/n = 1/2 is true for all n, stating that Mrs. K. Kuhn has
shown this inequality for all n with at most 6 prime factors. They also remark
that even the weaker inequality

liminf 220 el 1, 1

(1.1) infi(%"» >0

remains open.

In this note* we prove (1.1). The proof is elementary, the principal tool
being Brun’s method.

Throughout, the letter p denotes a prime.

2. The proof of (1.1). If T is a set of primes, let
s(Tx)= Y 1/p,

xl/e<p<sx
where Z' signifies that the primes p in the sum also have the property that p—1
is free of prime factors from T. We have the following result:

LEMMA 2.1. There is an absolute constant c, = 1 such that for any set of
primes T and any x we have

s(T, x) < c exp(— ). 1/p).
et

Indeed, this follows from [1] (Theorem 2.2) and a partial summation.

* Supported in part by an NSF grant.
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Note that if m is a natural number, then

logf‘(i)= Y log(1+1/p+ ... +1/p =) 1/p+0(1),
m peilm plm
1og9'(nﬂ) - "V_:log(l—l/p) = —|Z 1/p+0(1).

Given a natural number n, let S(n) denote the set of prime factors of ¢(n). Thus
ey 10gZ8) _1g20M) 1 0@ s s s 0q).
n @(n) n peS(n) pin

Let S'(n) denote the set of primes p such that every prime in p—1 lies in S(n).
Thus from (2.1) we have

ale(n
log((P—» > ) lp— Y 1/p+0().
n peS(n) peS’(n)
We conclude that (1.1) will follow from the following theorem:

THEOREM 2.2. There is an absolute constant c, such that
21— 1p<c
peS’ peS

for any finite set of primes S, where S’ denotes the set of primes p such that every
prime in p—1 lies in S.

Proof. Let S be an arbitrary finite set of primes, let k be a natural number
such that S < [1, exp(e¥)], and let T be the (infinite) set of primes that do not
belong to S. For each natural number i, let

Bi = z l/p’
peS’
exp(e! ~ 1)< p<exp(e!)

so that
2.2 Y lp=3+3 B.
peS’ i=1

Note that from Lemma 2.1 we have

(2.3) B: = s(T, exp(é)) <c,exp(— Y, 1/p)
pSﬁ:(e‘)
for each natural number i. Let
b, = Y 1/p fori=1,2,...

peT
exp(e’ ~ 1) < p<exp(e')
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Note that we may assume 2¢ T, for otherwise S’ = {2} and the theorem is
trivially true. Thus

2.4) Y 1p=3b fori=1,2,..
peT i=1
p<exp(e’)
Since
2.5) bj:= y p=1+0("%), i=1,2,...,

exp(e! ~ 1) < p<exp(el)

we infer from (2.3) and (2.4) that
B; <min(1, c,exp(—(b;+ ... +b))+0(e7)

for every natural number i. We conclude from (2.2) that

@O T 1p—F1p=3+Y 8= ¥ Up+ ¥ Up
pes’ pes i=1

p<exp(e9) peT
p<exp(e¥)

<

M

min(1, c,exp(—(b,+... +b)))—k+b,+ ... + b+ O0(1).

1

Now, for i > k, we infer from (2.5) that b; = b; = 1+0(e”’), so that
(2.7) Y min(1, ciexp(—(b;+ ... +b)) < Y e ¢V «1.

i>k i>k
Thus from (2.5)—(2.7) we will have Theorem 2.2 once we prove the following
lemma:

LEMMA 23. If ¢ > 1 is fixed and if

k
fby,...,b):= ) min(l, cexp(—(b,+ ... +b)))—k+b,+ ... +b,,

i=1

then the maximum value of f on [0, 1]* is less than e/(e— 1)+ log c for any natural
number k.

Note that the letters b,,...,b, appearing in (2.6) satisfy 0 < b; < b; for
each i, rather than 0 <b, < 1. However, the maximum value of f on
[0, b3] x ... x[0, b;] is less than or equal to the maximum value of f on

[0, max(1, b})] x ... x [0, max (1, b})],

which, by (2.5), is within O(1) of the maximum value of f on [0, 1]* Thus
Lemma 2.3 suffices for the completion of the proof of Theorem 2.2 and (1.1).

Proof of Lemma 2.3. Let k be given and assume the maximum value of
f is attained at (B,,...,B,)€[0, 1]*. First note we may assume that

B, <B,< ...<B,,
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for if B;,; < B, then interchanging these two numbers will not make f smaller.
If

cexp(—(By+ ... +BY)) =1,
then
f(By,....B)) =B+ ... +B, < logc.
So we may assume there is a first subscript i, such that
cexp(—(B;+ ... +B;)) < 1.
Then B;+ ... +B;,-; <logc, so that

k
28) f(By.....B)<ip+ Y exp(—(Bi+1+ ... +B))—k+B,+ ... +B,

i=ig+1

k
< ) exp(—(Big+1+ ... +B))—(k—ip)+Bigs1+ ... +B,+1+loge.

i=ip+1

Let

k
gbig+1,.--.b) =Y exp(—(ig+s+ ... +b))—(k—ig)+bigs1+ ... +b,
i=ig+1
and say the maximum of g on [0, 1]*7% is assumed at (4;,+4,...,4,). Thus
from (2.8) we have

(2.9) f(By,....B) < g(Aigs1,....A)+1+loge.

As above, we may assume A4; 4+ <...< A, . IfA; )4, = ...= A4, =1, then
from (2.9) we have
k—io e
f(By,....B)< ) e +1+loge <e—1+logc.
i=1 -
Thus we may assume there is a greatest index i, with 4; < 1.
If A;, =0, then from (2.9) we have

k—iy

f(By,....BY) <ij—ig+ ) e —(k—ip)+(k—i))+1+1Qgc
i=1
<L+lo c
e—1' OB¢

Thus we may assume 0 < 4;, < 1. Then

0
ngl(Aio-Fl” .. 'Ak) = 0,
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so that
k

210) 1= Y exp(—(Aigs1+ ... +4))

= [exp(—(Aig+1+ -.- +4;))](1 +exp(—1)+ ... +exp(—(k—i,))).
This implies
e
Aio+1+ ees ‘|‘Ai1 < logz—_—l—

Thus from (2.9) and (2.10) we have

f(By,....B) < (il—i0—1)+1-—(k—-io)+log$+(k—il)+1+logc

=lo L+l+lo c<i+lo c

which proves the lemma.
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