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BOHR LOCAL PROPERTIES OF C/(T)

BY

FRANCOISE LUST-PIQUARD (ORSAY)

Let Z be the group of relative integers, T its dual group, and A a subset of
Z. We denote by C ,(T) the closed subspace of C(T) (continuous functions on
T) which is spanned by €' (i€ A).

We consider the following problem:

(P) is a Bohr local property of C,(T) if for every keZ there exists
a neighborhood v(k) in the Bohr compactification of Z such that either 4 N v(k)
is empty or C,.,u)(T) has property (P). Does it imply that C,(T) has prop-
erty (P)?

We give (Theorem 2) an example of a set A (a subset of prime numbers)
such that C,(T) has a closed subspace isomorphic to ¢, and for every ke Z
there exists v(k) such that C,.,,(T) is either empty or one-dimensional. This
gives a negative answer to the problem for some properties (P) (Theorem 3). We
will study more generally sets of first kind (Definition 2 below).

The same kind of problems was studied before by Y. Meyer and G.
Godefroy for closed subspaces L'((T) of L! (T). (I}4(T) is spanned by e'* (i€ A).)
A set A c Z is called a Riesz set if !4(T) = M ,(T), where M ,(T) is the space of
Radon measures u on T such that ji(k) = 0 for every ke Z\A. By [8], the
property A is a Riesz set is a local property of L,(T). Some other local
properties of L}(T) are studied in [3], Theorem 2.3.

A set A < Z is called a Rosenthal set if C,(T) = L3(T). One aim of this
paper is to answer the following question of G. Godefroy: is the property A is
a Rosenthal set a local one for C,(T)?

Notation and definitions are in the first section. Section 2 contains the
definition of the announced set A and the properties (P) for which it is
a counterexample. In Section 3 we give some sufficient conditions on a set
A < Z for C,(T) to have a closed subspace isomorphic to ¢, They are more
general than the ones used in Section 2. We apply them to sets A N v(k), where
A is the set of prime numbers or A = {j*};5, (s > 1 a fixed integer) and k € Z lies
in the closure of A in the Bohr compactification of Z.

We thank S. Hartman for having brought [4] to our attention and for
very fruitful discussions on this paper.

1. Notation and definitions. We will only consider sets A = Z such that
A = (4);>1, where (4);>, is an increasing sequence. It is easy to extend
definitions and results to the case where (4));z is increasing.
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We denote by T the group R/2nZ provided with its usual topology, and by
T, the same group provided with the discrete topology. We denote by Z the
Bohr compactification of Z, ie., the dual group of T,

Q denotes the group of rational numbers in T The spaces C(T) and M(T)
were defined in the introduction. I'(T) is the space of classes of integrable
functions on T with respect to Haar measure. L°(T) denotes its dual space, and
C"(T) denotes the bidual of C(T). Let A be a subset of Z. C,(T), L'4,(T) and
M (T) were already defined. L3(T) is the dual of ! (T)/Lz 4(T) and C ,(T) is
a closed subspace of L5(T). A is the closure of A in Z

Let D be a discrete topological space. c,(D) is the completion of finitely
supported functions for the norm

Al = sup @)

teD
The dual of ¢,(D) is denoted by I'(D), the bidual is denoted by I°(D). For
D = N we write only c,, I, I*.
DEFINITION 1. A real sequence (u));>, is uniformly distributed modulo 1 if

Vk € Z\{0} n~! i exp (2inku)—»0 (n— + o).

J

DEFINITION 2 ([4]). Let A = (4));>1 = Z and let D be the set of t'se T for
which (4;t);5  is not uniformly distributed modulo 1. We will say that A is a set
of first kind if D is countable, and a set of first kind (Q) if D is a subset of
QO (which will be the case in the examples).

The following sequence of functions is associated to every A = (4));>;:

L) =n"1 Y exp(ind).

j=1
It is classically used in harmonic analysis (see, e.g., [4] and [7]). It is
a uniformly bounded sequence in C ,(T) which converges to O at every te T\D
and to 1 at t =0. If 4 is a set of first kind, a subsequence (f, ).>, converges
pointwise on Tto a function [ which is supported by D and such that /(0) = 1.
In particular, (f, )>; is a weak Cauchy sequence which does not weakly
converge.

DEFINITION 3 ([4]). Let A =(4);>; <Z and A'c A. For n>1 let
o(n) = Card{jl 1 <j<n, Aed}.
We say that A’ has an upper positive density with respect to A if

limn~15(n) > 0.
If n~15(n) has a positive limit (n — + c0), we say that A’ has a positive density
with respect to A.
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2. We first give a sufficient condition for C,(T) to have a closed subspace
isomorphic to c,,.
THEOREM 1. Let A =(A);>, = Z be a set of first kind and let R be an

arithmetic progression such that A N R has an upper positive density with respect
to A. Let

L@ =n"1 z exp2imAt).
ji=1

Then

(@ AnR is a set of first kind.

(b) Let us assume that a subsequence of (f,),>1 converges pointwise to
leco(Ty). Then C,(T) has a closed subspace isomorphic to c,. C4~r(T) also has
one if either A N R has a positive density with respect to A or if (f,).> 1 converges
pointwise to lecy(T)).

Proof. (a) Let R =j,+q9Z(j,€Z, qe N\0). Let u be the measure on
T defined by

q-1
p = expRinjot)g™"' Y Opg-1.
. p=0
Then /i) =1 if jeR and ji(j) =0 if jeZ\R. Let
fi=6"1m) Y  exp(ndyp).

1<j<n,AdEAnR

Then

fa =nd"()f,*p.
By hypothesis, (f,).>1 converges pointwise to 0 outside a countable set D T,
hence (f,).>1 converges pointwise to 0 outside the countable set
D= |J (D+pq™h.
0<p<g-—-1
(b) Let ue M(T) and let u = p, +p,, where pu, is the atomic part of p. If
(f, k=1 converges pointwise to lecy(T}), then

s B0 = L 1+ 120 =<, 1y =<1, w5

hence ! defines an element of C4*(T) < C"(T).

By Proposition 3.1 of [5] or Lemma 4 of [6], C,(T) has a closed subspace
isomorphic to c,.

Ifn=18(n)> (6 > 0), the subsequence (f;, )x > converges pointwise to élu
which is again a non-zero function in c¢,(T;). The same is true if (f),>,
converges pointwise to lec,(T}) and. ng *8(n,)— 5 (6 > Q). Thus A N R satisfies
the same hypothesis as A and the same conclusion holds.
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ExaMPLEs. 1. Let P = (p);>, be the sequence of prime numbers. By
Vinogradov’s theorem ([2], Theorem 9.4), P is a set of first kind (Q). For every
te Q the sequence

f,®)=n" Z exp (2inp;t)

converges to I(t) and lecy(Q) ([2], p. 349, and the proof of Theorem 9.4).
Let R = j,+9Z (j,, g€ N\0). If j, and q are not relatively coprime, PN R is
either empty or contains one point. If j, and q are relatively coprime, P N R has
a positive density with respect to P ([2], Theorem 2.5 and p. 280).
So P and PN R (if Pn R contains more than one point) satisfy the
hypothesis, and hence the conclusion of Theorem 1. The fact that P n R is a set
of first kind (Q) was already mentioned in the proof of Theorem 4 in [4].

2. Let s be an integer > 1. Let A = (j);>; and R = j,+9Z (jo€ Z, ge N\0).
If A n R contains j, it contains obviously (j+ gN)*; hence 4 N R has a positive
upper density with respect to A.

By Satz 9 of [11], A =(j);», is a set of first kind (Q). Let t = a/qe Q
(0 <a<q). Then

a 1w . .8 1 v . 158
f..(—) =n"! ) exp (211:]’—) =n"!} exp (21751’-)14:..1.«'
q j=1 q =1 q

where A,;,=Card{jl 1 <j<n, j=1(g)}. As
n/q_l < An.l,q < n/q,

we have
fa/q)—flalq)  (n— +00).

By Lemma 2.4 of [10], for every ¢ > 0 there exists a constant C(s, ¢) such that

If,(a/g)l < C(s, g~ ™",  s>2;

hence the function a/q ~ f, (a/q) lies in c,(Q). If s = 1, we have f,(0) = 1 and
fia/g) =0 if a#0.

So A={};>; and ANR (as soon as it is not empty) satisfy the
hypothesis, and hence the conclusion of Theorem 1.

We will need one more property of the set P.

LeMMA 1 ([8]). Let P be the set-of prime numbers. For every ke Z\{1, —1}
there exists a nezghborhood v(k) in Z such that v(k) N P is either empty or reduced
to {k}.

Let us recall the proof: f for every q€Z\0, q2 qZ is an open set in Z and
4Z N Z = qZ. Take v(0) = 4Z and v(k) = k+3kZ if k¢{0, 1, —1}.

Here is the announced example.
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THEOREM 2. Let P be the set of prime numbers, R =2+5Z and A = PN R.
Then:

(a) For every k€ Z there exists a neighborhood v(k) in Z such that A n v(k) is
either empty or reduced to {k}.

(b) C,(T) has a closed subspace isomorphic to c,.

Proof. (a)_For k # +1, v(k) is chosen as in Lemma 1. v(1) = 1+5Z and

v(—1)= —1+5Z are disjoint from R.
(b) follows from the recalled properties of P and Theorem 1.

Let us now look for which properties (P) this example shows that (P) is not
a Bohr local property of C,(T).

A Banach space X has the Schur property if every weak Cauchy sequence
in X is norm convergent. Every finite dimensional space as well as I' have the
Schur property but ¢, does not. A Banach space X has the Radon—Nikodym
property if every bounded linear operator: !(T)— X is representable by
a strongly measurable function: T— X. By [5], C,(T) has this property iff A is
a Rosenthal set (and L!,(T) has this property iff A is a Riesz set).

THEOREM 3. Let A be as jn Theorem 2. Then C ((T) is locally a Rosenthal
set and has locally the Schur property, but C ,(T) has neither of these properties.

Proof. By Theorem 2 the result is obvious for the Schur property. If
Anv(k) = {k}, clearly

CAnv(k)(T) = Lfionv(k)(n'

By Theorem 2, C ,(T) (hence L3 (T)) has a closed subspace isomorphic to c,. By
[1], L%(T), which is a dual space, has a closed subspace isomorphic to [*;
hence LT (T) cannot be the same space as the separable space C,(T) and A is
not a Rosenthal set.

By using the same example we can solve Problem 1 of [6].

DEFINITION 4 ([6], Lemma 1, Definition 4, Eberlein theorem). A function
FeL*(T) is totally ergodic if there exists a net (v))el'(T,) such that

(l) "vz"l'(Ta) = <v¢' 1> = 1,

(i) ¥,issupported by v,(0) and (v,(0)), is a basis of neighborhoods of {0}
in Z.

(iii) Vk € Z (e~ 2™ F)xv,— F(k) uniformly on T.

Every continuous function on T is totally ergodic. Hence, if A is
a Rosenthal set, every function F e [’4(T) is totally ergodic. The converse does
not hold since we have

THEOREM 4. Let A be as in Theorem 2. Every function in L°°(T) is totally
ergodic but A is not a Rosenthal set.

Proof. We have already proved in Theorem 3 that A is not a Rosenthal

3 — Colloquium Mathematicum 58.1
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set. For every keZ let v(k) be as in the proof of Theorem 2. Let
G =(e—2inh'F)*va.

a

Hence
G,(n) = F(k+n)é (n) for every neZ.

As soon as k+v,(0) c v(k) we have G, (n) =0 if n # 0 and G,(0) = F(k) (two
cases must be considered: either v(lf)n A =@ or v(k)n A = {k}). This means
that G, is the constant function F(k) and that F is totally ergodic.

3. We now generalize Theorem 1 by using an idea of [5].
THEOREM 5. Let A =(4;)j>1 = Z be a set of first kind. We assume that

L@ =n"1Y exp(2ini)
j=1
converges pointwise on Tto lecy(T). If A’ = A has a positive itpper density with
respect to A, then C,.(T) has a closed subspace isomorphic to c,.

In Theorem 3.1 of [5] or Theorem 3 of [6] we only considered the case

A=Z, fO=02n+1)"' Y exp(mjt);

j=-—n
hence I(t) =0 for t # 0 and [(0) = 1.
Proof. By assumption there exists a subsequence (n,);>,; such that

m 1(n)— 9,

where § is the positive upper density of A’ with respect to A. We then have to
consider the subsequence (f, )i>:- We will however write n > 1 instead of
(m)x>1 in order to simplify the notation.

By Proposition 3.1 of [5], Theorem 5 will be proved if we can exhibit
a non-zero function /'€ ¢y(T)) and a uniformly bounded net (f,) in C,.(T) such
that

o> 0 —=<F, ) for every pe M(T).

Let us define:

vn=n—l Z 611,

1<j<n,ded
whence v,€l'(Z) and V, = f;
n=1,v,=n"t Y 4,
1<j<mazen’

whence .v, e l1(Z);

H)=n"1 Y exp(niy),

1<j<namEA’

whence v, = f,. Then

0) Vallnzy = <vps 1> =1 =£,(0),
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(i) Vt €T 7,(t)— I(1),
(i) [valling) = Va, 1D =£000=n"16(n) <1 and n~'8(n)— 4.
By (i) and (ii) there exists a positive measure ve M(Z) such that

v=1 and v,-v o(M(Z), C(Z)).

Obviously, v is supported by A.
Let us show -that {f;, u> =0 for every diffuse measure ue M(T):

|<fas D] = KVn, Bl = 071 8(m)[KvalIvallingzy, A
< (1718 ) 2 (i JARDY? < (o, [APYV2 = K, w2
(where ji(E) = ji(—E) for every Borel set E = T). By assumption,
s pgiy =1, prfiy = 0.
Let now v e M(Z) be a limit point of (v),», for a(M(Z), C(2)), ie.,
vy @)V, @)  for every ¢peC(2).

Obviously, v is supported by A
Let us define

I'(t) =v() =limv,(t) =lmf,(t) (teT).

We shall prove that ' ec,(T). As a consequence, {I', u> = 0 for every diffuse
measure u on T, hence

Ihwy =0=1mdf;, uy,

and for every pe M(T)
K, py =lm<lf, p.
We first prove that ' defines a continuous linear form on L} (v). For every
peC(Z)
KKV, @)1 = lim kv, @] < lim (v, |ol>
< li:n oo Lol = <v, o) = ll@llLiy-
In particular, v’ is absolutely continuous with respect to v, i.e., v' € I} (v); hence
there exists a sequence (g,)x>; in C(Z) such that
gy — V'l mzy—0
and we may assume that every g, is finitely supported on T A fortiori,
19y =1 liogra—O.

As lecy(T) and g,y = g,+l, we have proved that I'ecy(T).
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Remark 1. Let A = Z; let us recall that A is an M-set in Z if there exists
a measure ve M(Z), supported by A, such that ¥ecy(T). Under the assump-
tions of Theorem 5 we have proved that A and A’ are M,-sets in Z. In
particular, the sets P and {j};>, (s€ N\0) are M,-sets in Z. By [9], P is a set of
Haar measure 0.

We could not answer the following question:

Let A < Z be such that A is an M ,-set. Does C ,(T) have a closed subspace
isomorphic to c¢,? (P 1374)

We now give a sufficient condition in order that A'= A nnwv(k) has
a positive upper density with respect to A when A is a set of first kind (Q), ke Z
and v(k) is any neighborhood of k in Z. Obviously, kK must be in 4. We
generalize the method used in [4] (Lemma 3 and the proof of Theorem 4) for
k =0and 4 = {j*};>, on one hand,for k = +1 and A = P on the other hand.

THEOREM 6. Let A = {A;};> < Z be a set of first kind (Q). Let ke Z be such
that, for every R=k+qZ (@ = 1), AnR has a positive upper density with
respect to A. Then ke A and, for every neighborhood v(k) in Z, A nv(k) has
a positive upper density with respect to A.

Proof. For every keZ and every v(k) there exist ([4], Lemma 3) an
integer g > 1, irrational numbers f,,...,B, which are independent over Q and
0 > 0 such that v(k) contains the set

E,={neZ| nek+qZ =R and
lexp (2innp,q~')—exp inkBg~ ') < 5, 1 <1< L}.

‘ By assumption and Theorem 1(a) the sequence (4;t);>1,1,c4nr is uniformly
distributed for every t¢Q. Let us put ANR = {4; }mso. Thus for every
hy,....h €Z not all zero we have

r L
r=' Y exp(2ind;, Y hPg ')-0 (r— +).
m=1 =1

Let

r

(D=1 = (}vjmﬁzq_l)féleTL and g =r"! Z o
1

We have just proved that for every fe C(TE)

o O = [fAr VD).

By taking a non-zero f with values in [0, 1], supported by a suitably chosen
neighborhood (kB,g')[=, € T" we see that A N E, has a positive density with
respect to A N R, and hence a positive upper density with respect to A.

THEOREM 7. (a) Let P be the set of prime numbers. For every neighborhood
v(+1)in Z, Cpnyy (T) has a closed subspace isomorphic to c,. The same is true
for every v(—1).



(b) Let A= {f};>,. If s is an even integer,
. AnZ = A0 {0}.
If s is an odd integer,
AnZ =Au(—-4)u{0}.
For every ke A and every neighborhood v(k) in Z, A nv(k) has a positive upper
density with respect to A and C 4,q,(T) has a closed subspace isomorphic to c,,.

Proof. (a) P nv(1) or P nv(—1) has a positive upper density with respect
to P by the proof of Theorem 4 in [4] or by Theorem 6 and the properties of
PN R recalled in Example 1. We conclude by Theorem 5.

(b) The fact that {j_z},-zo N Z = {j*};50 is proved in Lemma 3.6.2 of [3] by
considering two cases: kK < 0 and ke N\A. We follow the same method. Let s be
an integer > 2 and ke N\A, k # 0. There exist a prime number p, n >0,
n', k' =1 such that k = p™*"k’, 1 <n’ <s, and p does not divide k'. Let

R=k+p™*tVZ,

then AN R is empty. Let s be >2 and k < 0. Let
R=k+3[kZ.
If AnR is not empty, there exist je N and qe Z such that
F=k(1=3/kP~"q) = |kl|— 143k~ q].

These two numbers are coprime, and hence |k|, |—1+3[kl*"*g|eA. If s is an
even integer, this is impossible because the equation —1 = j2(3) has no
solution. (This is taken from [8].) Hence

AnZ c AU {0}.
If s is odd, this implies ke —A. Hence

AnZ c Au(—-)u{0}.

If ke AU {0} and s > 1, AN R is not empty for every R = k+qZ (q > 1) and
has a positive upper density with respect to A as it was recalled in Example 2. If
ke —A and s is odd, for every R = k+q9Z = —jy+qZ let ae N be such that
aq—jo, > 0. Then

(ag—jo,yeAnR;

hence A N R has a positive upper density with respect to A. In both cases, by
Theorem 6, v(k) N A is not empty for every v(k); hence ke A. Theorem 6 again
and Theorem 5 now conclude the proof.
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