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1. Introduction and preliminaries. Let {a,,} and {b;}fori, k =1,2,...
be double sequences of real numbers and let {X,, ¥ > 1} be a sequence
of not necessarily identically distributed random variables, defined on
a probability space (2, , P). Limit properties of sums

(1) 8; = Za’ik(xk_bik) a8 t—>o0
k=1

have been investigated in various papers, e.g. in [1]-[3] and [56]-[8].
It was proved that the sums of form (1) have many properties similar
to those for random variables

Y i

1 Z
(2) T‘ = '@T‘ Xk as 'l:—>°°.
k=1

The aim of this paper is to give sufficient conditions for convergence
in probability to zero of sums

(3) 8w, =2“Nnk(xk_ank) a8 n—>o0o,
%

where {N,,n >1} is a sequence of positive integer-valued random var-
iables defined on the same probability space (2, «, P).

We assume that for every »>1 and k> 1 the random variables
N, and X, are independent. Moreover, we suppose that sequences {N,,
n>1} and {a;., ¢, k > 1} are such that either

(4) ES}lp[aNn,-IZ |aNnk|‘ = o(E 2 laN,,klt) as n—> o0
k k
or
() E( D layul) =o(B Y layyl) as n->oo,
k k

where 0 <t < oo.
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Further on, we suppose that {g;(!),%¢>1}, te R, is a sequence of
non-negative real numbers such that

~

{6) E ; lay il < Boy, (1), n>1.

To abbreviate the notation, set
F (y) =P[X;<yl, Fily) =P[X,—EX,<y)l, k>1,
if BX, exists, and put

F(y) = sgpP[IXkl >yl, Fiy) = slllcpP[IXk—EXkl =>y].

2. Results.

THEOREM 1. Let {X,, k> 1} be a sequence of random variables and
{N,,n>1} a sequence of positive integer-valued random variables both
defined on a probability space (2, ,P) and such that, for every k> 1 and
n>1, X, and N, are tndependent.

1°If0<t<1,¥Fy) < M < oo for all y>0, and (6) holds, then

(0) P[|8y,| > ¢] = O(Bgy, () as n—>co,

with by ; =0 a.s.
2°If0<t<1,yF(y)—>0 as y— oo, and (4) and (6) hold, then

{0) P[I8y,| > e] = 0o(Egy,(t)) as n—>oo,

with by, = 0 a.s.

In the following theorems we assume that {X;, k > 1} is a sequence
of independent random variables, and a sequence {N,, » > 1} satisfies the
assumptions of Theorem 1.

THEOREM 2. 1° If t =1, yF(y) < M < oo for all y > 0, inequality (6)
i8 satisfied, and

T
(7) lim sup| [ ydF(y)| < oo,
T—o0o k _p

then (O) holds with by =0 a.s.

2°If t =1, yF(y)—>0 a8 y—>oco, and (B), (6), and (7) are satisfied,
then (o) holds with by =0 a.s.

THEOREM 3. 1° If t =1, yF(y) < M < oo, and (6) 8 satisfied,
then (0) holds with
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Ia]\rnkl‘l
?/dFk(?/) "’f Nn¢[i: ay = 0],

—laNnkI_l
0 if N,e[i:ay = 0] as.

2° If t=1, yF(y)>0 as y—>oo, and (4) and (6) are satisfied,
then (o) holds with by ; given by (8). '

THEOREM 4. 1° If 1<t < 2, ¥'P(y) < M < oo, and (6) is satisfied,
then (0) holds with by ;, = EX, a.s.

2°Ifl<t<2, yF(y)>0 as y—>oo, and (4) and (6) are satisfied,
then (o) holds with by, = EX; a.s.

THEOREM 5. 1° If t = 2, y2F (y) < M < oo, inequality (6) is salisfied
and, moreover,

(8) by =

J0< i< o VO < o, p<max[8,4/1]+2,
®) B[ ekl ( Y oblloglax,ll)* = 0(B( Y akaf*) a5 noo,
k i k

then (0) holds with by, = EX, a.s.
2° If t =2, y2F(y)—>0 as y— oo, and (5), (6), and (9) are satisfied,

then (o) holds with by ; = EX, a.s. ‘
THEOREM 6. 1° If t > 2, 4'F(y) < M < oo, inequality (6) is satisfied

and, moreover, '

J0<a< oo Va<f<btat2 VO< y<6btat?2,

a0 B Jaip) (3 el = 0(B( 3 a))

a8 n—>oo, then (0) holds with by _;, = EX; a.s.

2° If t> 2,y F(y)—>0 as y—>oo, and (5), (6), and (10) are satisfied,
then (o) holds with by, = EX; a.s.

LEMMA 1. The following conditions are equivalent:

There exists a random variable X such that
(A) {(a) VEkeN,P[IX|>y]1<P[X|>y),
| (22) BIX|'< M, < oo

(b)) F(y)—>0 as y—>oo,
(B)

(by) [ y'1aF(y)| < My < oo.

8 — Colloquium Mathematicum XXXVIIIL1
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THEOREM 7. If t =1, F(y)—>0 a8 y—>oo, (4) and (6) are satisfied
and, moreover,

(11) [ y1aF (@) < M < o,

then (o) holds with by ; = EX, a.s.

By Lemma 1, if {X;, k> 1} is a sequence of independent random
variables uniformly bounded by a random variable X such that E | X| < oo,
we have

THEOREM T7'. Ift = 1, and (4) and (6) are satisfied, then (o) holds with
by, = EX; a.s.

In all proofs we put P[N, = ¢] = p,;,. Summations in (1) and (3)
may be taken only over those values of ¢ for which a,; = 0. Integrals
will be Lebesgue-Stieltjes ones. By C we shall denote different, in general,
positive absolute constants. .

Proof of Theorem 1. By Theorem 1 of [8], for any given ¢ > 0
we have

P8 > 1< C D lagl,
k

and sin(;e X, and N, are independent for any ¥ >1and » > 1, we see
that 1° holds.
To prove 2° let us put

I =[i: sup |aal < 71,
where 7 > 0 will be fixed later. Then for an arbitrary & > 0 we have

P8y, > €]l = D P8I > e1pim+ ) PLISH > £1pjn.

ted ¢l

Now let v be any given positive number. For sufficiently small
fixed %, by Theorem 2 of [8] we obtain

T
DIP1I8 > e1pin < 5 Box, (0.
tel

Further, by (4), for sufficiently large n we have
1 1 T
DIPUSI> clpm< 75 D) sup lagl D 1aul'pye < Bow, (0,
U] 1 2
i1 il k
which proves 2°.
Using Theorems 1b and 2b of [3] and the considerations given in the
proof of Theorem 1 one can easily establish the statements of Theorem 2.
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Proof of Theorem 3. 1° Since random variables X, are independent
of N,, we have the inequality

(12) P[|8y,| > £1< 2 2 Pllag Xyl > 119 +

+ZP[|2“¢1¢( k—b¢k)|> 8] Pins

where Y, = X, #[la;X;] <1], and S[A] denotes the indicator of A.
The first term on the right-hand side of (12) can be bounded as fol-
lows:

. 1
(13) Z;P[laikxkl>1]1’m< 2 2,,: F(W) P
<UD D laulpi, = 0(Eex, ).
i k

For the second term in (12), since by = EY,;,, by Chebyshev’s ine-
quality we have the estimation

(14) ZP [l; @i (Y — bik)| > 8]?:»
3

lag!—1
03 SarTir<o 33T wrwmn.
4 k

0
< 022 |G| Pon = O(EQN,,(t))'
1 k
To prove statement (o) we make the assumption
i1
Ve>031>0Vy>, yFw)<q,

estimating the terms on the right-hand side of (12). It can be seen that,
for
tel = [i: 3‘:13 lagl < 11,

we have

1 T
(15) Z ZP[laekal>1]Pm< Z ZF(IG—”‘I)pm;EeN,.(t).

If j ¢ I, then, using (4),
B
16) ' M PllauXal > 11py
J k

CZ SUp |a| 2 laﬂl’supyF(y)pj,. EeN,,(t)
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Now, let us observe that

7€2

T
11
Ve>03np>0VT> —,—f2yF(y)dy<—.
7 .T0 2

By this fact and considerations which have led to (14), we have,
for 1el,

(17) 2 P ['2 @i ( Yo — bize)
i e

If j ¢ I, then by (4) we get
(18) ZP [‘Z a’jk(ij'—bjk)! > 8] Djn
7 %

T
Q. 1 T
<0 } sup |a;| E |Gz | Pjn SUD —f 2yF (y)dy < —Eoy (t).
‘TJ 1 - >0 T Y 2 n

T
> S]Ptn < 0 Eon,(1).

Inequalities (15)- (18) together complete the proof of 2°.
Proof of Theorem 4. By Theorem 1l¢ of [3] we know that

P18, > 1< C D lagl
k

and we see that the first assertion of Theorem 4 can be obtained in the
same way a8 1° of Theorem 1.
To prove 2° we need the inequality

[

(19) D PS> 261p;, < D) D) P [lag (X —EX,) > 11py,
1 i k

< ‘ZP ”;‘ 0 BZ;

where

> s] P+ Z P U; iy (Zyy— EZik)l > S]Pi" ’

Zy = (X, —EBX,)S [la,; (X, —EX,)| <1].

Taking into account (15) and (16) and putting F’ instead of F we
see that '

D Pllag (X, —EX,)| > 11p,, = o(Boy, (1))
t

Now we observe that

©0

S 1 (1 -
@) mZu< [ vl - )+ [ Pwaw.

a1 | @l -1

ikl 8|
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Using (20), we have

(21) ZPHZ“MEZM
i k
<ey 3w (fag) 20 3 X [ Fwa.

|aﬂ¢f_l

> 8] Pin

By the same arguments as for (15) and (16), we get

2 F F () 210 = o (Bew, ).

Since, by the assumptions of Theorem 4,

T
V>0 39>0 Ve, <9, f F'(y)d Eﬂ“{kl‘ -
laggel—1

for 1 ¢ I we have
(o]

, T
(22) 2; 105 .a,,,.f—nF (4)dy Pin < = By, (-
If j¢ I, then by (4)

00

(23) ;‘Z (@] m,kf lF'(y)dypjn < OZ 2 || f y~'dyp,,

- lajkl -1
2 oy s‘1P G| Djn < EQN,‘ (t).

To estimate the last term of (19 , let us first observe that under the
assumptions of Theorem 4

1 , .
Vz>039p>0Vy>—, 2yF (y) < ' (2 —-1).
]

Now set
I = [i: sup|ag| < min[y, ?/¢9]].
k

If ¢ € I, then
Ian‘:l“l

(24) Z P [’Z a;(Zg—EZy)| > 3] Pin < % Z Z a5 f 29F' (y) dyp,
i Tk ik 0

1/n
B -
<0 > a;-’,,f YAy P +7C Y Y ahlagl " pin
T % H T %
R - \"
<C ‘E ,‘E Ia,-,,l'mllplaal2 ‘Din+7C ? ;,E |aw!' Pin < ¥CBoy, (#).
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If j¢1, then, by (4),

o

26) D 'P[|Y ap(Zi—BZyu)| > e <0 Y Dk [ y'ayp,
J k i &k 0
< 022 lajkltsup 6511 Pjn < TEgn, (7).
P

Thus we have proved Theorem 4.
Proof of Theorem b. First we observe that, by the inequality
given in [1],

(26) P[I8y,>36]1< D) D' Pllag(X, —EX,)| > elpi+
k

t

+ D' D Pllay(X;—EX;)| > &P [lag (X, — EX,)| > 8]pin+
t

J#k
+ Z P ”;‘ 04 B2y > & pin+ ;‘ P [|;‘ 05 (Zi—EZ,)

where

6 = (Y ah)" and  Zu = (Xu—BX)S [l (X~ BX,)| < 4.
k

> &| Dins

Under the assumption y2F (y) < M < oo (see [3]) we have

Z Bpin = ZZP[]aik(Xk_EXk)I > &]Pin+
7 T %

+ D) D' Pllay(X; —EX,)| > 8,1P[lay(X;—EX,)l> 8,1ps+

1 J#k
+ 3P ”2 a,-,,EZi,,l > el P < 0D Y ahpis
) k ) k
and, consequently,
(27) D Ripi <€D D ahpin = O(Bey, (1)
i i k

Thus we only need to bound the last term in (26). We follow the method
used in [1]-[3].
Let us choose a positive integer » such that

max[8, 4/1] < 2v < max[8, 4/A]+2.

Using the estimations given in the proof of Theorem 1d of [3], we
obtain
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(28) 2 P[I Z a’ik(Zik—EZik)l > &| Pin
7 % '

< 2 ¢ 2 ‘2 "” |aigy ™ B | Zg, — EZp, ™ p,
1 k=1
<0 dTor( ) e Bz} p,
T k

where the sum )* is taken over all integers a, m,, m,, ..., m, such that
2<m, k=1,2,...,a, and m;+my+...+m, = 2», and in the sum
>** subscripts By, fay ..., B, Tun over the positive integers.

It is enough to consider the case §; > ¢~ *¥’, where y2F'(y) < M < oo
for all y > 0. Thus

\ 2 2 2 ' 61' ’ 2
Z alBZ% < E a3, |2 M log ] +1lg2m E a [log ayl|.
% % P

A

Now by (9) and (28) we have
(29) Z P ” 2 a’ik(zﬂc—EZik)l > 3] Pin
i %

<C Z 2* ( 2 a?k)('—am ( ; G llog |a'€kll)apin
5 3
< C 2# 2 ( ; a?k)(v—a)/aﬂapm.

The sum )" is finite, since it depends only on ».
Now, we prove that for an arbitrary real number A > 0 and for a,
0<axy,
y—a
2

(30) +Aa > 2.

If A> }, then
v+a(2A-1) v
5 T3>

gince 2» > max[8,4/1]. If 0 < A < %, then
v+ a(24—1) > v+9v(24-1)
2 = 2
Taking into account (30), we see that the last expression in (29)

is O(Eey, (?)), which completes the proof of 1°.
To prove 2° let us put

I= [z 2a§k<n], where 7 > 0.
k

=i > 2.
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The consideration similar to that in the proof of Theorem 1, 2°,
after using Theorem 2d of [3] and inequality (26), allows us to write

ZRiPin = O(EQNn(t))'

Finally, by (28)-(30), we have proved 2°.

Proof of Theorem 6. 1° The first term on the right-hand side
of (26) can be bounded as (13), changing F into F'.

The second term is less than

e 22wt (o) 7 (g

i

Now let us write
6, = max (3 laal)"™, (Y k)]
k k
It suffices to consider the case where
D eyl < 1.
k
Then
57 < ( X laal) ™ < (3 taal) ™
k k
Now (31) is of the form
D D layt {supy' F' (y)}* = O(Eey, (1),
"
sup being taken for

y= (2 la'iklt)_m-
%

To bound the third term on the right-hand side of (26) we use the
inequality

(32) |2 aikEZik‘ < 06}-‘2 lagl' < 0(2 Iaﬂl,)(uzg)m
% - 2

(for the proof of this property, see [3]). If
0( 2 |a'ik|‘)(l+2t)l3'< €,
k

then
P”; 04 BZ,| > ] = 0.
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On the other hand, we have
(33) Z/P [|2 . BZy| > 3] Pin < 022 i)' D = O(EQN,,(t))-
i k Tk

1

Now we are going to estimate the last term of (26). Let us fix an
integer » such that 6ta < 2v < 6ta+2, and a real number x4, 0 < u < t—2.
By Markov’s inequality and by (2.29), (2.32), and (2.33) of [2], we get

(34 P[Xau(Z,—~B2,)| > o
k
<o '3 ﬁ (045, " B|Zy5, — BZ 5 ™

'b(t—p—2)

\02 (2 "‘) +t : ‘Z | @] )Tz_ atrt- +ma+b-“+bl‘

where the sum Y™ is taken over all positive integers a, b and m;, k =1,2,
«s.y a+b, such that

2<m<t fork=1,2,...,a,

and
t<m, fork=a+l,a+4+2,...,a4b and m,+my+ ... +my, = 2v,

and the sum )™** is taken over all sets of positive integers (8;, fay-.«yBats)-
As previously, it suffices to consider the case where

D laglt < 1.
k
8 = X ah)™.
k

It is easy to verify that

(35) ( Z a’{k) 6 (my+...+mq) (Z ik)(ml'*' +"'a)( )

and

Then

t—pu—2 2 2 I—p—2
(36) | ) )= (\ jaal) 78t < Zaa,)? -2( lagl)* T
Thus (34) takes the form
67 P[|Y au(Z:—~BZ4)| > ]
k

_ 2 2v+bll 5 b(l—p—2)

< 02# (Zafk)(m1+...+ma)(%— at) -2 T s (Z |6 ])" -z
- .
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By (10) and (37), we get
38)  D'P[| Y awlZu—EBZa)| > ¢] pin
i k

my+...+mg 1 1)+ 2 bp 2 bu |, 5 bt—u—2)

OZ‘Z (Z‘ |a; |) a BT T YT = .

Since the sum Y™ is finite, it is enough to show that the exponent
in (38) is greater than 1. This is true in view of the assumption 6fa < 2v
< 6ta+2. Thus we have proved 1°.

To prove 2° we estimate the right-hand side of (26) under assump-
tion (5).

Let us set

I= [z (;‘Iaﬂc]‘) < 77]'

Putting F’ instead of F into (15) and (16), we obtain statement (o)
for the first term on the right-hand side of (26). By (31), we see that under
the assumptions of Theorem 6, 2° the second term of (26) is o(EgN”(t)).
For the proof we consider the set

L= [i+(Yaal)" <o,

where y'F’(y) is sufficiently small for y > 1/.
To estimate the third term, we observe that

P[lZ’aﬂ,Ez,.,c >e|=0 i 0(;‘ Y R
k

and, in the opposite case,
ZP[I Za'ikEZikl > 8] Pin < 02 ( 2 @ I‘)zpin = O(EQN,,(t_))°
i k i k

The last term in (26) is o (Egy, (), for the exponent in (38) is greater
than 2. .
Thus the proof is completed.

Proof of Lemma 1. (A) = (B). By (a,) we have

v
E|X'> [lefdP[X <a]+y' P[IX|>y]
-V

Y
> [ |o'dP[X < #]->E|X|' a3 y—oo.

=t
Hence, by (a,),
<YF@H) <y'PlX|>y]>0 as y—>oo,
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which proves (b,). Assertion (b,) follows from

0 oo
M> [|yldP[X <yl+ [¢'dP[X <y]
—~00 0

= [(A1-P[X<y]+P[X < —y)dy' > [F(y)dy' = [¢'|dF(y)l.
0 0 0

(B) = (A). Let
1 fy=0
Gy) = . ’

F(N) if N<y<N+1.

We observe that 1 —G(y) is the distribution function of a random
variable X. Then, for every k € N,

PlX,Z>y]I<F(y) <1—-G(y) =P[X >y]
and

E|X| = f y'1dG (y)| = 2 [F (k—1)— F (k)]

k=1

<142 2 (k—1)'[F(k—1)—F(k)] < 1+2'M < oo.
k=2
Thus we have proved Lemma 1.
Proof of Theorem 7. Let us estimate the right-hand side of (19).
The first term can be bounded as (15) and (16) putting only 7’ instead
of F. ' .
To estimate the second term let us observe that by (20) and Markov’s

inequality we have
> &] P < oZZIa,,,l f Y14F" (9)|D;s -

(39) 2 P[] Z 6487y,
1/lazgl

By the assumption of Theorem 7 we see that

[ y1aF' (y)|>0 as T—oo.
T

Therefore, using the method of the previous proofs, we see that (39)

The last term of (19) can be estimated 81m11ar1y as (24) and (25).
This completes the proof.

Theorem 7' follows from Theorem 7 and Lemma 1.

3. Concluding remarks.

1. One can observe that our theorems yield, among others, results con-
tained in [1]-[3] and [5]-[8]. To see that it is enough to put N, = % a. s.
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In this particular case, Theorem 4 is stronger than the correspondlng
result of [3]. Theorem 3 did not appear earlier.

2. Let a; be such that (4) holds and
2 @l < O
k

For such real numbers, by Theorem 7°, §y —0 in probability as
n—oc. This fact extends the result of Rohatgi [7].

3. Let
1" for 1< k<1,

40 A;;. —
(40) “7lo  for k>i,

where r > 1/t. In this case,

‘ 11t 1-rt
EZI“N,,I:I =Z7/ "Piwm =ENT,
% 7

and under the assumptions of Theorem 1, 1°, and Theorem 2, 1°, we have
N, n
P[| > x| > ;] = 0BV,
k=1

Theorem 3, 1°, gives
Np N, -
P[| (%~ [ wabi@)|> M| = 0(BNLY)
k=1 N.

—n

and by Theorem 4, 1°,
Ny,

P”.Z (X, —EX,)| > eN4] = O(EN™).
k=1

To obtain similar results for ¢ > 2 we give the following
LEMMA 2. If ;> 0, b;> 0, p; >0 for t =1,2,..., and

Zad’i < o0, Zbipi< 0o, and ZP: =1,

then
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From Lemma 2 we conclude that assumption (9) is satistied for a,
given by (40) and for 0 < 1 < 1. Similarly, if

r>1 and >rt—1
2 *Zor—1°’

then (10) is valid. Thus, if { > 2, then

Nn
P[ikz: (X, —EX,)| > V| = 0(BNST, 1> %
=1

To characterize convergence in probability to zero of sums with ran-
dom indices we need

LEMMA 3. If N,—>oo in probability as n—oo, then, for an arbitrary
$<0,EN;—>0 as n—>oo.

By Lemma 3, (4) is satisfied for

1/t
(T) for 1<k<i,

a‘k=l
0 for k> «.

Hence, under the assumptions of Theorems 1, 3, and 4, if ¥N,—o0
in probability, then, for 0 <t <1,?t =1,and 1 << 2, we get, respec-
tively,

Nn
P[‘gxk|>aN,l,"]—>O a8 n—>o0,

Ny Np
P[|£(Xk-f_£nwd1/’k(m~))l > eN,| >0 a8 n—>oo,

and
Nn
P[|2 (X, —EX,)| > eN}| >0 a8 n>co.
k=1

4. It is known that if Y, —0 in probability as n—>oo, N,, ¥,, ¥,, ..
are independent for every n > 1 and, moreover, N,—>oco in probability,
then Y, —0 in probability as n—oo.

Theorems obtained in this paper give the conditions under which
Yy,—0 in probability as n—oco without the assumption that ¥Y,—0 in
probability as n—oco. Furthermore, they furnish information about rates
of convergence in probability.
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Example. Let {X,, k> 1} be a sequence of independent identically
distributed random variables such that E|X,| < oo and EX, = 0. Sup-
pose that, for p = 1,2, ...,

1/t for 1<k<1, ¢ =2p,
0 for k>, 1 = 2p,

1 for k =1, ¢ =2p-—1,
0 for k>1, ¢+ =2p—-1.
One can observe that

sgp]aikl-HO a8 1—>00
and we cannot use Theorem 1 of [7] to assert that
8; = ) a3 X, -0 in probability as i—>oo.
k

Thus we do not know if §;—0 in probability as ¢—co.
Now let {N,,n > 1} be a sequence of positive integer-valued random

variables such that, for p =1,2, ...,

1
P[Nn = 1] = ';7

n? ' —(1m)?P! 1—-1/n for i — 2

. p—1)! e —1 v =

P[N, =1] =

(1/n)?P~! 1—-1/n for i — 9p L1

(p—1)! —1 v=2p+1.

We have

EZ laN”,,l =1 and Es?p ]aNn,IZIaNnkl—w a8 n—>o00.
k x

Therefore, by Theorem 7°, Sy —0 in probability as n—oco.
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