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1. Introduction. The purpose of this paper is to characterize induced
maps between weak solenoidal spaces and to improve a theorem of Fort
and McCord ([3], Theorem 1) concerning the approximation of maps
between inverse limit spaces. We follow the notation of [2] for inverse
limit systems. Given an inverse limit system (X, f) indexed by the directed
set M, we have onto bonding maps f: X; - X, (a < fin M) and projection
maps f,: X, -~ X, from the limit space X, onto the factor spaces X,.
Let (Y, g) be a second inverse limit system (indexed by N). ¢: X — Y
is said to be an induced map if there is an order preserving function
A: N> M and a system of maps ¢,: X;, ~ ¥, (for each neN) with
P = gro, (if m < n) such that ¢ is defined by g,,¢ = @nfim-

The following question is stated in [3]: “Under what conditions on
the systems (X, f) and (Y, g) can every map F: X_ — Y be approxi-
mated arbitrarily closely by induced maps?” This question is related to
a problem posed by Mioduszewski [5]. Fort and McCord [3] give some
sufficient conditions for such a map to be approximated by an induced
map that is e-homotopic to #. In Theorem 1 we weaken these conditions
as well as show that the approximating map agrees with F on the inverse
image (under F) of the “vertices” of Y. In Theorem 3 we give necessary
and sufficient conditions for the map F': X — Y itself to be an induced
map, where (X, f) is an inverse limit system of compaect, connected,
Hausdorff spaces with all bonding maps onto and each projection f, :
X, — X, is an identification map, and where (Y, g) is a weak solenoidal
sequence of polyhedra.

2. Notation and statements of results. A weak solenoidal sequence
(solenoidal sequence) of polyhedra is an inverse limit sequence (Y, g) such
that each factor space Y, is a connected polyhedron and each bonding
map gn: Y,—> Y, (n>=>m) is a covering map (regular covering map).
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For a polyhedron Y with a given triangulation, we use the barycentric
metric d, defined by

d(z,y) =2{|w(v)—y(v)|: v a vertex of Y},

where 2« (v) is the barycentric coordinate of xe¢Y with respect to v.
The limit space Y, =lim(Y, g) of a weak solenoidal sequence of
polyhedra is a compact metric space. The metric d,, may be given by

do(®@,y) = D274, (9.(2), 9.(¥))

(see [3]).

THEOREM 1. Let (X, f) be an inverse limit system of compact, connected,
Hausdorff spaces with all bonding maps onto. Let (Y, g) be a weak solenoidal
sequence of polyhedra with Y, having any given triangulation. Then for
any map F: X — Y and any ¢ > O there is an induced map ¢: X — Y
that agrees with F on the set V = (f, F)™! {v: v a vertex of Y,}. Moreover,
there is an e-homotopy hi,: X, — Y. relative to V from ¢ to F. Hence
dy (¢, ') < e.

THEOREM 2. Let (X, f) be an inverse limit sequence of polyhedra with
all bonding maps onto and let (Y, g) be a weak solenoidal sequence of poly-
hedra with Y, having any given triangulation. Then for any map F: X — Y,
onto Y, and any ¢ > 0 there is an induced map ¢: X, — Y onto Y
that agrees with F on the set V = (f,F)™! {v: v a vertex of Y,}. Moreover,
there is an e-homotopy h',: X, — Y, relative to V from ¢ to F.

A map F: X, — Y is said to be fiber preserving if there is an integer
n such that for each weX, there is a yeY, with F(f, ' () < g7 (¥).

THEOREM 3. Let (X, f) be an inverse limit sequence of compact, con-
nected, Hausdorff spaces with all bonding maps onto and each projestion
ot X = X, an identification map. Let (Y, g) be a weak solenoidal sequence
of polyhedra. Then a map F: X — Y 18 an induced map if and only
if F is fiber preserving.

3. Construction of approximating maps. Let (Y, g) be a weak sole-
noidal sequence of polyhedra with Y, having a given triangulation. We
choose triangulations of each Y,(n > 2) so that all bonding maps gj,:
Y, Y, (n>m) are simplicial maps. Let (X, g) be an inverse limit
system of compact, connected, Hausdorff spaces with all bonding maps
onto. The following lemma is a sharpening of the statement of Theorem
X.11.9 of [2]:

LeEMMA 1. Let h: X — Y, be a map (for some fixed n). Given any
e> 0 there is an index yeM such that for every £ >y there is a map
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v: X;— Y, and an e-homotopy hi: yfs ~h (rel V), where V = h™' {z: @
a vertex of Y,.}. Hence d(yfs, h) < e.

Proof. The proof given in [2] suffices if we observe that yf;|V = h|V
This follows quickly, for if b is a vertex of Y, , then b belongs to a unique
open star neighborhood with respect to a subdivision Y, of Y,, namely
st(b, ¥,) (Y, is a subdivision of sufficiently fine mesh, depending on &).
Let = be the covering of Y, by open star neighborhoods, let ¢ = h™'z,
and let 6 be any open covering of X, such that f;'(d) refines a. Consider
a point zeh'(b) and any open set Ued containing fy(x). Then f;'(U)
< b (st(b, X})), and the latter is the only member of « containing fz'(U)
Hence it follows from the proof of X.11.9 in [2] that yfs(x) = h(x). Thus
yfs and h agree on V. Finally, the homotopy between yf; and & is constant
on the set of points in X, for which yf; and A agree.

The next lemma is standard (see, for example, [3]).

LEMMA 2. Let A be any connected space. Suppose there exist an ¢ > 0,
m<n, maps ¢,y: A—Y,, and an e-homotopy h..: ¢ =~ y(relV) for
some V < A. If there is a lifting ¢ of ¢ with respect to the covering projection
g: Y, Y,, then there is a lifting p of v and an e-homotopy Bl: o ~v
(rel V) covering h,. Furthermore, if ¢, v, and ¢ are onto maps, then v is also
an onto map, provided ¢ is sufficiently small.

4. Proof of Theorem 1. Suppose (X, f),(Y,q),F: X,—~ Y., and
e > 0 are as in the statement of Theorem 1. We follow [3] to construct
by recursion an induced map ¢ e-approximating F. According to Lemma 1
there is an index y(1)eM, a map ¢,: X.,(l)—> Y,, and an e-homotopy
hi: @1 fyny =g, F (rel V), where V = (g, F)"! {b: b a vertex of Y,}. By
the alternate use of Lemmas 1 and 2 we construct a sequence y (1) < y(2)
< ... of indices from M, a sequence of maps ¢,, ¢, . , and a sequence
of s-homotopies B, i, ... such that (for each n)@,: X, — Y, , @, flim+)
=gn (pn+1’gn+1h:1,+l = ht’ and hn (pnfy(n) =Gn (relV) We have con-
structed an induced map ¢: X, — Y, defined by the relation g,¢ = ¢,f,m
and an induced e-homotopy hf,o: ¢ ~ F(relV) defined by the relation
Inhio = Hy,.

Remark. If (X,g) is an inverse limit system of polyhedra, the
maps ¢, can be chosen to be simplicial (see Lemma 2 of [4]).

COROLLARY. If X =Y and F: X — Y is a homeomorphism,
then ¢ 18 a homotopy equivalence.

Proof. Apply Theorem 1 to F~' and obtain y ~ F~'.

5. Proof of Theorem 2. We use the following result of Mardesié and
Segal (Lemma 4 of [4]):

LeEMMA 3. Let X be a continuum, P, a polyhedron and f,: X — P,
an e,-mapping onto P, and let 6 > 0 be an arbitrary positive number. Then
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there is an e, > 0 such that, for any polyhedron P, and ¢,-mapping f,: X — P,
onto P,, there is a mapping n: Py, — P, onto P,, such that the distance

d(fy, nf) < 6.

To prove Theorem 2 we observe that given any &, > 0 there is an
index n such that f,: Y — Y, is an ¢-mapping, for every m > n. Now
we follow the proof of Theorem 1, using Lemma 3 in place of Lemma 1
to obtain onto maps maps between the factor spaces (as in Lemma 1
we have f,|V = af,|V for V = fi! {v: v a vertex of P,}). Lemma 2 assures
us that the final sequence ¢,, ¢, ... consists entirely of onto maps.

6. Proof of Theorem 3. Let (X, f) be an inverse limit sequence of
compact, connected, Hausdorff spaces with each projection f,: X — X,
an identification map (that is, the topology of X, is the largest for which
fn is continuous), and let (Y, g) be a weak solenoidal sequence of poly-
hedra. It is clear that any induced map X — Y is fiber preserving,
so we will only give an argument for the converse statement.

Suppose the map F: X — Y is fiber preserving. Then there is
an integer y(1) such that ¢, F is constant on each fiber f,,‘(})(cc). Since
[y is an identification map, ¢, = (g, F)f;1 i8 a continuous map ([1],
Theorem VI. 3.2).

Now applying the same technique as used for the proof of Theorem 1,
we define recursively a sequence of maps ¢,, ¢3, ... to get a diagram

Xy(l) <~ X?(2) <« Xy(g,) ...« X

l‘l’l ¢‘P2 l% lF
Y, « Y, <« Y; «...«< Y

However, in this case we observe that the diagram is commutative,
since at each step the maps ¢,f,,) and g, F are both liftings (with respect
to g,_,) that agree on at least one point of X, and hence ¢,f,,) = g,F-
Hence F is induced by the sequence ¢,, ¢, ...

Remark. In light of Theorem 3, it is quite easy to construct maps
(even homeomorphisms) which are not induced.
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