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MEASURABLE SOLUTIONS
OF QUADRATIC FUNCTIONAL EQUATIONS
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1. Introduction. This note considers primarily measurable (Lebesgue
on R") solutions of certain systems of functional equations, the main
result being that all measurable solutions are, in fact, ¢ on R". However,
some of the results are valid for more general settings, and hence the
problems will be posed in terms of functions with values in a field # and
with domain ¢, where (¢, +) defines a commutative semigroup. This
will be specialized later to the case ¥ = R" and # = R.

The first problem considered is that of determining the 2N +1 un-
known functions A, f,, ..., fx, g1y ---5 gn: ¥—F satisfying a functional
equation of the form

(1) h(z+y) = Aﬁfi(w)gj(y); where 4,j =1,2,..., N,
and where, as through this note, the Einstein summation convention on
repeated indices is used. The AY are assumed given, a system of N* ele-
ments in the field #, subject to the condition
(2) det(AY) = 0.

It is natural to assume
(3) g1y...5 gy linearly independent,

(4)  fiy ..., fy linearly independent,

since otherwise certain terms in (1) could be combined so as to reduce N.
Methods developed by Vincze [10] have proved particularly useful
in solving specific equations of form (1). Numerous references are given
in [1] together with the following known result ([1], p. 199):
If 9 =% = R and f, in addition to (2), (3) and (4), it 18 assumed
that h, g;, f; have primitive functions H,G;, F;, then h, g;, f; are €* on R,
The system of N simultaneous functional equations for N unknown
functions g¢;: ¥ £, i.e.,

(5) g(@+y) = I'Yg;(w)g;(y), where i,j,k=1,2,...,N,
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and where the I'’ denote a given system of N° elements from %, has
found numerous applications. To illustrate, Rota and Mullin [7] unified
many results in combinatorics under the heading of “polynomials of
binomial type”. These are defined as polynomials go(x), g,(%), gs(2), ...
satisfying the recursive system of equations

)
(6) gk(w+y)=Z(f)gk-,(w)gf(y), (f)= k!

—_;
L rt(k—r)!

the polynomials so characterized in [7] include the Bell, Abel and Laguerre
polynomials. System (6) has been used in [2] and [11] as the composition
law for, and characterization of, certain Poisson distributions, while the
general solution of (6), where ¢ is a commutative semigroup and # = R
or # = C, was found by Aczél and Vranceanu [3] (see also Kuczma and
Zajtz [6]).

Finally, the general equation (5) for continuous ¢; and for &, ¢
either R or C was studied from the standpoint of hypercomplex numbers
in [4], [8] and [9]; the I/ are interpreted as the multiplication constants,
relative to some basis, in an associative algebra with unit defined on the
vector spaces RN or C¥.

2. Statement of results. The first theorem concerns the simultaneous
system of equations (5) and relates various properties of the domain
(¢, +) with corresponding properties of the coefficients I'Y.

THEOREM 1. Assume that (5) admits a solution g;: ¥— F for a field #.
On the Cartesian product F~ define a binary operation

o: F¥XFN - FN

as follows: with X =[X,,...,Xy] and Y =[Y,,..., Y] elements in
FYN associate Xo Y e FV expressed by
(XoX), = IV X, Y;,

80 that (F%, 0, +) forms an algebra over F. Then the linear independence
hypothesis (3) implies that if (¥, L) is associative and[or commutative
and|or with unit, then the algebra is associative and|or commutative and|or
with unit, respectively.

The second theorem shows that equation (1) is essentially equivalent
to the system of equations (5); clearly, each equation in (5) is of type (1).

THEOREM 2. Assume F a field, and (9, +) commutative and asso-
ciative. If h, f;, g;: 9—F satisfy (1), given (2), (3) and (4), then the g; (and
also the f;) satisfy a system of equations of form (5).

The remaining two theorems are specialized to the case ¥ = R" and
Z = R, using Lebesgue measurability on R" to deduce ¥ on R".
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THEOREM 3. If the g;: R"— R are (finite) Lebesgue measurable, linearly
independent solutions of system (5), then the g; are, in fact, €° on R".

By Theorem 2, if h, f;, g, satisfy equation (1) subject to (2), (3)
and (4), then both the f; and the g; satisfy a system of equations of form (5)
to which Theorem 3 applies. The proof of Theorem 2 yields an even stronger
result.

THEOREM 4. Assume h,f;, g;: R"—>R satisfy (1) subject to (2), (3)
and (4). Then each of the hypotheses

(a) h is measurable on R",

(b) the g; are measurable on R" for © =1,..., N,

(c) the f; are measurable on R" for ¢+ =1,..., N,
implies the other two and also implies h, g;, f;e€> on R".

This generalizes the results in [1] and, in fact, using the methods
given in [1], shows that the measurable solutions are of the “exponential
polynomial” type (solutions of linear homogeneous differential equations
with constant coefficients).

3. Proof of Theorem 1. If (¥, +) is associative and/or commutative
and /or with unit, say 0¥, then (5) implies correspondingly
(TP T — I T7) 9:(2)9;(9) 9. (2) = 0 for all @,y,2¢9,
(I — I¥) g:(2)g;(y) = 0 for all &,y
and
Iilg; (@) = gi(®) = I} g:(x)l;  with I; = g,(0),
which may be written as
(IFl—l)g;(@) = 0 = (IYl— &) gs(x) for all wed.

Here 48} denotes the Kronecker delta (I = (d;) the identity matrix).
For each fixed z, y the linear independence of g,(z), for each » that of
9;(¥), and that of g;(x) implies the vanishing of the coefficients. Hence

rery_rikpis —o, I_IF—o, TI¥l, = = I,

The theorem follows immediately upon multiplication of these equa-

tions by X;Y,Z,, X;Y; and X;, respectively, for arbitrary X, ¥, Ze F".

4. Proof of Theorem 2. It is well known [1] that a necessary and
sufficient condition that fy,...,fy: ¥—F be linearly independent, with
% an abstract set and £ a field, is that there exist elements #,, ..., zye¢¥
such that det(f;(2;)) # 0; similarly for g,, ..., gy. Set yy = fi(®) with
the inverse matrix (y7), ;9™ = 6F = y¥y,;.

With this choice of z,, by (2) equation (1) becomes

(7) h(z,+y) = A%y,9;(y)  with det(47yy,) #0.
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Hence
(8) 9,(y) = Bfh(m,+y) with det(B}) 0,
and, in view of the complete symmetry of the problem, so also
(9) fi(@) = C¥h(z+y,) with det(CF) # 0.

Note in passing that, for Theorem 4, equations (7), (8) and (9), to-
gether with the obvious

h(z+y,) = Aij'}’;kfi(w)7 V;k = 9;(Yx),

show that (a), (b), (¢) are equivalent assertions. By (8), together with
commutativity and associativity in (¢, +), we have

(10) g9;(@+y) = Bih[(x,+2)+y] = BfA™f, (%, +)g,(y)
while, by (9), we obtain
fi(wk+w) = Orh[(a"k"*‘?/r)'*‘w] = CZqufp(wk‘l'yr)gq(w)

which, when substituted in (10), yields (5). By symmetry, the f,, ..., fx
also satisfy a system of equations of type (5).

S. Proof of Theorem 3 ('). The proof will be based on Lebesgue’s
theorem on the almost everywhere differentiability of absolutely con-
tinuous functions of intervals (or balls) in R". To be precise, the proof
requires the following form of this theorem:

Let 6 be open in R*, 0 < u(0) < oo with u Lebesgue measure. Suppose
f: 0—>R measurable and |f| < K almost everywhere on 0. Then there exists
a subset Q2 < 0, u(82) = u(0), such that

. 1
(11) lim___ do = f(x,) for all xye 2,
0 :u{BQ(wO)} Be(zo)f f f °

where B,(x,) denotes the open ball about x, of radius ¢ > 0 (and sufficiently
small to imply B,(x,) < 0).
In essence, with

F(B) = [ fda,

B

assertion (11) becomes DF = f almost everywhere on 6.

LeEMMA. Under the hypotheses of Theorem 3 there exists an open 6 < R™
on which all |g,| are bounded, say |g.| < K on 0 for all k =1,2,..., N.

(}) The author is indebted to a referee for many helpful suggestions and, in
particular, for considerable simplification in this proof.
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Proof. For arbitrary U < R", u(U) > 0, write
8 = (@12 U, k< |g2(2)] < k+1}.
All 8, are measurable, disjoint and
o]
U Sk = U.
k=0

Hence
w(T) = D' u(8) > 0
k=0

implying that some 8, has positive measure with |g,| < ¥, +1 on 8, < U.
Now replace U by 8, , and g, by g, to obtain §;, = §,, for which
92l < F2+1, p(8,,) > 0, while still maintaining |g,| < ¥;+1 on §;,. Repeti- -
tion of this process yields a set § = R™ with u(S) > 0 on which all |g,|
are bounded, say by K*. But since the g, satisfy (5), we have

196 < 1T max N*(E*? =K on S+8.

But, by Steinhaus type theorems (see, for example, [5]), S+8 > 6
open.

To complete the proof, choose 6 according to the Lemma. For f = g,
let 2, be the set on which (11) holds. Since u(£2,) = u(6) for each
k=1,...,N, so also

N
(N ) = p(6) > 0.

N .
Hence there exists an ye (1) £2; for which (11) holds for all f = g,,

k=1

k=1,...,N. The system of equations (5) implies that

[ g@+yydo =18 [ 9:(x) dwg; ()

Bq(xo) Bg(“’o)

and, by a change of variable, this becomes, when divided by u{B,(w,)},

1

12 “AB (z )Y
(12) y{Bc(wo)} v+By(Zo)

() dz = A} (0)g;(y),

where

! ¢ [ g

Aj(e) = ————
k(e) /"{Be (-’”o)} B ()



102 M. A. MCKIERNAN

But :4%(p) is continuous in ¢ > 0 and, by (11),
lim 4}(e) = Iy g:(o)
o—0

(since z,e 2, for each k¥ =1,..., N) which can be taken as a definition
of A4%(0) with continuity for ¢ > 0. But, by (5),

9k (%o +Yy) = 4%(0)g;(9),

and hence det (A{,(O)) # 0, since otherwise there would exist non-trivial
Ay ..., AN for which A*g,(x,+y) = 0 for all y, contradicting linear in-
dependence. By continuity it follows that, for some pg,,

det(4}(g)) 0 for all 0< o< g,,

and (12) may be solved in the form

9,9) =B%e) | gu(@)dw for arbitrary ge(0, go),
!I+Bo(zo)

ifrom which follows the continuity, and hence ¥*, of all g;.

6. Proof of Theorem 4. The equivalence of (a), (b) and (c) was shown
n Section 4. By Theorem 2, the f,, ..., fy and also the g,, ..., gy satisfy
a system of type (5) while, by Theorem 3, the f; and ¢g; are then ¢*-func-
tions, and so also is he%™ by (7).
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