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1. Introduction. The present work deals with properties of P-spaces
and the Baire topology (also called. the @G,-topology) of a Tihonov space.
Specifically, we investigate the concept of normality in P-spaces and the
preservation of paracompactness and Lindel6f degree by the Baire topology
of scattered spaces.

The following summarizes the organization of the paper. Section 2
presents the basic definitions and notation used in this paper. Section 3
presents several preliminary results; in particular, we state results due
to A. W. Hager, and to W. Rudin, A. Pelezyriski, and Z. Semadeni, which
characterize among the P-spaces and the compact spaces, respectively,
the spaces satisfying the following property: each continuous real-valued
function defined on the space has countable image. We also establish that
each completely additive disjoint Baire family in a pseudocompact space
is countable. In Section 4, we discuss the concept of normality in P-spaces.
It is shown that, under a certain set-theoretic restriction, normal P-spaces
with dengity no larger than ¢ are collectionwise normal. An example
(in ZFC) communicated to the authors by W. Fleissner shows that normal
P-gpaces with density larger than ¢ need not be collectionwise normal.
It is also shown that normal pseudo-N,-compact P-spaces are collection-
wise normal. Section 5 considers the Baire topology of a Tihonov space
and includes the following results: the Baire topology of a paracompact
(respectively, Lindelof) scattered space is paracompact (respectively,
Lindel6f). The Lindelof portion of this result generalizes a similar result
for compact spaces due to P. R. Meyer. We also add some new equivalences
to the many already known which characterize when the Baire topology
of a compact space is Lindelof. Finally, we establish the equivalence of
certain properties of the Baire topology of a pseudocompact space which
are related to the commuting of the Hewitt realcompactification operator
» and the formation of the Baire topology. Section 6 presents several
examples which answer natural questions arising from the discussion in
Sections 3-5, and Section 7 gives a list of unsettled questions.
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We extend our thanks to Professors Linn Sennott and William Fleis-
sner for several discussions on the contents of this paper.

2. Definitions and notation. Unless otherwise specificd, we will
employ the definitions and notation used in [5]. In particular, we consider
only Tihonov (that is, completely regular and Hausdorff) spaces. The
members of the o-field generated by the zero sets of a Tihonov space
X are called Baire sets and a function f: X — R is Baire measurable if
f~!'(A) is a Baire set for each open set A of R. Baire(X) denotes the family
of real-valued Baire measurable functions. The Baire topology (or G,-topo-
logy; called the :-topology in [10]) of a Tihonov space X is the weak
topology generated by Baire(X); equivalently, the Baire topology is the
topology having for a basis the family of Baire sets (or zero sets or G,-sets)
of X. The resulting topological space is denoted by bX. We note that since
the Baire topology of X is generated by the G,-sets of X, if A is a subset
of X, the Baire topology on A is the restriction to A of the Baire topology
on X. A P-space is.a space in which each G,-set (or zero set) is open. It is
easily established that the Baire topology is the smallest P-space topology
which contains the topology of the given space. The density character
of a space X is denoted by d(X). If m is a cardinal number, X is m-Lindelof
if each open cover of X has a subcover of cardinal at most m. A space X
is almost-compact (respectively, almost-Lindeldf; see [3]) if at least one
of any pair of disjoint zero sets is compact (respectively, Lindelof). X is
pseudo-N,-compact (see [7]) if each locally finite family of open sets or
cozero sets is countable (equivalently, if each discrete family of open
sets or cozero sets is countable). X is functionally countable if each member
of C(X) has countable image. A space is scattered (or dispersed) if every
non-empty subspace contains an isolated point.

3. Preliminary results. The results stated in this section will be used
in the sequel. The proof of 3.1 is outlined so that it may be contrasted with
the proof of 5.7. The proofs of 3.2-3.4 are included because these results
have apparently not appeared in the literature.

3.1. ProrPosITION (Rudin [14], Pelczynski and Semadeni [13]).
Assume X 18 compact. Then the following are equivalent:
() X is fundtionally couniable.
(ii) f € O(X) — |f(X)] <e.
(iii) X <8 scattered.
Outline of the proof. To establish (i) = (iii), assume that X
is not scattered. Then there exists a non-empty compact subset K which

has no isolated points. For each sequence ¢ = (¢,, ?,, ...) of zeros and ones
define a non-empty closed subset 4, of K in the following manner:
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Let B(0) and B(1) be disjoint non-empty closed subsets of K. Let
B(i0) and B(il1) be disjoint non-empty closed subsets of B(s) for 7 = 0, 1.
Continue this process inductively and put

A‘ = n B(tl’tz’ oco’tn).

Nl

Let A = (J{4,:1€{0,1}}. The mapping f: 4 — {0, 1}* defined
by f|4, = t i8 a continuous function from the compact set A onto the
Cantor set; hence f may be extended to f € C(X) with |f(X)| = e.

To prove (iii) = (i), let f be an element of O(X). If |f(X)| > N,, then
J(X) is an uncountable compact subset of R, so f(X) contains a copy O of
the Cantor set. Let A be a subset of f~!(C) such that f|A : A — O is irre-
ducible. Then A has no isolated points.

Note. The implication (i) = (iii) of 3.1 is found in [13], and (iii) = (i)
is found in [14].

The next proposition characterizes the functionally countable spaces
among P-spaces.

3.2. ProPOSITION (A. W. Hager — oral communication). A P-space
28 fumctionally countable if and only if it 18 pseudo-N,-compact.

Proof. Assume that # is an uncountable discrete family of non-empty
open subsets of X and let {U,},., be a subfamily of #, where AcR and
|4|=¥,. For each 8 € A, choose z, € U, and f,eC(X) such that f,(»,)=s
and f,|(X — U,)=0. Then f=}'f,eC(X) (since # is discrete) and |f(X)| =¥,.

To prove the converse, if X is not functionally countable, choose
feC(X) such that [f(X)| > N,. Since X is a P-space, {f~'(r): r e R}
is an uncountable discrete cozero family.

Remarks. (i) Examples of pseudo-N,-compact spaces are pseu do
compact spaces, Lindelof spaces, and spaces which satisfy the countable
chain condition.

(ii) The proof of 3.2 shows that every functionally countable space
is pseudo-N,-compact; hence paracompact functionally countable spaces
are Lindelof (see [7]).

(iii) A metric space is functionally countable if and only if it is count-
able. To see this, suppose (M, 4) is a functionally countable metric space.
M must be separable gince a non-separable metric space has an uncount-
able closed (and hence (-embedded) discrete subset which admits a con-
tinuous real-valued function with uncountable image. If M is zero-dimen-
sional, M can be viewed as a subspace of R (see [6]); hence the injection
M — R has countable image, so M is countable. Therefore, we are done
if we can show that M is zero-dimensional. But if M is not zero-dimen-
gional, there is a point p € M such that the function f: M — R defined by
f(@) = d(p, ) has uncountable image — in fact, |f(M)| = ¢ — contra-
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dicting the functional countability of M. Thus M is countable. It follows
that a space X is functionally countable if and only if every continuous
metric image of X is countable.

3.3. LEMMA. Let X be a set and let & be a collection of subsets of X with

the following properties:
(i) {9, X} < %,

(ii) B 18 closed umder finite unions and countable intersections,

(iii) each subfamily of # which has the finite intersection property
also has the countable intersection property.

Let # be the. closure of ® under countable intersections and countable
unions. Assume f: X — R is a mapping such that f~(H) € # for each open
subset H of R.

Then f(X) t8 a Souslin set in R (that i, a member of the family of sets
generated by the Souslin operation from the closed sets of R).

Note that (i) = (iii) says that # is a semi-compact paving in the
sense of [1].

Proof of the lemma. Define h: X x B — R X R by k(z, 2) = (f(2), 2)
and let nx: X X R - X denote the projection mapping. The assumption
on the mapping f guarantees that, for each open set G in R X R, we have
(@) € &, & being the set of 8§ = X x B which may be Souslin derived
from sets of the form B x H, where B € # and H is open in R. Since the
diagonal 4 in R X R is a G,-set, we have

W1(4) = {(=, f(2)): v e X} e 2.

Hence, by 1.3 in [1], the assumptlon on # guarantees that =y (h~'(4))
= f(X) is a Souslin set in R.

3.4. PROPOSITION. Assume that X is pseudocompact. Then each com-
pletely additive disjoint Baire family is countable.

Proof. Assume that {B,},.g is8 an uncountable completely additive
disjoint Baire family, where 8 < R is not a Souslin set and |S| = N,.
(Such a set S may always be chosen: if ¢ = N,, then simply choose any
8 = R which is not a Souslin set; if N, < o, choose a set 8 with |[S] = N,;
then 8 is not a Souslin set since each uncountable Souslin set in R contains
a copy of the Cantor set.) Let # be the family of zero sets of X. Then
the # defined in 3.3 is the family of Baire sets of X and . satisties the
conditions in 3.3 since X is pseudocompact, Define f: X — R by

s if zeB,,
0 if 2¢(JB,.
8seS
Since {B,} is a completely additive Baire family, f € Baire(X); hence,
by 3.3, f(X) = S8u{0} is a Souslin set, which contradicts our choice of S.

f(@) =
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4. Normality. We first remark that a P-space need not be normal — an
example is given in Section 6, but many others are known. In fact, there
are compact spaces such as [0, 1]*° whose Baire topology is not normal.
On the other hand, assuming the continuum hypothesis (CH) we infer
that each P-space of cardinal not greater than ¢ is paracompact. (This is
eagily proved by an induction argument — see [7].) The results of this
section fall between these two extremes and are responses to the following
question: When are normal P-gpaces collectionwise normal?

4.1. PROPOSITION. Assume that X i3 a normal P-space such that each
closed disorete set in X has cardinal at most ¢. Then X is collectionwise mormal.
Proof. Let {4,},.g be a discrete family of closed sets in X. Since

closed discrete subsets of X have at most ¢ elements, |S| < ¢, we may assume
8  R. Let
A = J4,

8€esS

and define f: A - R by fl4, = s. Then fis continuous, so by the normal-
ity of X there exists f € C(X) such that f| A = f. Since X is a P-space,
each f~(s) is an open set and A, = f~*(s), so the result follows.

4.2. COROLLARY. Assume 2°F > 2°. If X is a normal P-space with
d(X) < ¢, then X i3 collectionwise normal.

Proof. Since X is normal, d(X) < ¢, and 2°% > 29, each closed discrete
set in X has cardinal at most ¢, 80 4.1 may be applied.

Remarks. (i) Professor William Fleissner has pointed out that a modi-
fication of Bing’s example @ yields an example (in ZFC) of a normal P-space
(with density greater than ¢) which is not collectionwise normal.

(i) Assume V = L. Then any normal space (whether a P-space or not)
in which each closed set has character at most ¢ is collectionwise normal.
To see this, let {F,} be a discrete family of closed sets in X and let ¥
be the quotient space obtained by identifying each F, with a point y,. One
may verify that Y is normal. ¥ has character at most ¢, 8o, by [2], ¥
is collectionwise Hausdorff. Therefore, the closed discrete set {y,} can be
separated by open sets in ¥, so the family {F,} can be separated by open
sets in X. Hence X is collectionwise normal.

4.3. PrOPOSITION. The following stotements are equivalent for a P-
space X : -

(i) X is normal and pseudo-N,-compact.

(i) X 48 normal and each closed discrete subset of X is couniable.

(iii) X 78 normal and each uncountable subset of X has a limit point.

(iv) X 18 collectionwise normal and pseudo-N,-compact.

Proof. The implications (iv) = (i) and (ii) <> (iii) are immediate.
To establish (ii) = (iv), first note that (ii) and 4.1 imply that X is collection-
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wise normal. Since (ii) guarantees that each discrete cozero family is
countable, X is also pseudo-N,-compact, so (iv) is established. To complete
the proof we need only to establish (i) = (ii). Assume that there exists
a closed discrete subset F' of X of cardinal ¥, and let f : ¥ — R be a one-to-
one mapping. Since X is normal, f extends to f € C(X), and since X is
pseudo-N,-compact, 3.2 implies that the image of f is countable, which
is a contradiction.

5. The Baire topology. Before proceeding to the main results of this
section, we recall the idea of dispersal order. Given a Tihonov space X,
define

D,(X) = {x € X: 2 i8 a limit point of X}.

Assume that D, (X) has been defined for f < a. If a is a limit ordinal
define
Dy(X) = () Dy(X).

B<a

If a is not a limit ordinal, define
Da(x) = Dl(Da-l(X))

(the set of all limit points of D,_,(X)). One may easily verify that X is
scattered if and only if there exists an ordinal a such that D,(X) = @.
If X is scattered, define ay = inf{a: D,(X) = @} to be the dispersal
order of X.

5.1. THEOREM. Assume X is a paracompact scaitered space. Then
bX is a paracompact space.

Proof. Assume that the conclusion is false and put

v = inf{ay: X is paracompact, scattered, and bX is not paracompact}.

Choose a paracompact scattered space X such that v = ay and bX
is not paracompact. We will first show that v is not a limit ordinal. Assume
the contrary; then

D, = D,(X) # @ for each a<r and (\D,=9.

a7t

Choose a o-discrete cozero refinement

- % = U%‘
i=1
of the open cover {X —D,: a < 7} and choose U € %;. Since U <« X —D,
for some a < 7, we have D,(U) = Un D, = @; hence ay < a < 7, U para-
compact (since U is an F,-set), and U scattered imply that bU is para-
compact. Let 8; = | J{U e#,}, ¢ = 1,2, ... Each bS; is the discrete union
of clopen paracompact spaces, so each bS; is a clopen paracompact subspace
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of bX. It follows that bX is paracompact, which is a contradiction. Thus
7 i8 a non-limit ordinal, so we may write = = y+ 1. Since D,(D,) = D,
=@, D = D, is a closed discrete subset of X. Let # be a cover of X by
zero sets (of X). For each x € D, choose a cozero set 0, of X containing
x such that the family {C,} is discrete in X. Then F = X —|_JC, is a zero
set with D (F) = FND = @. Hence ap < y implies that bF is a clopen
paracompact subspace of bX. For each « € D, choose Z, € # that contains .
Since 0, —Z, is a cozero set in X and ag,_, <y (in view of D,(0,—Z;) N
ND = @), each b(C,—Z,) is a clopen paracompact subspace of bX.
Thus # restricted to 8 = Ful J{(C,—Z,) : # € D} has a locally finite
open refinement %’ in b8, so # has the locally finite open refinement
#'v{0,NZ,: e D}. We have therefore shown that bX is paracompact,
which contradicts the choice of v and establishes the theorem.

5.2. THEOREM. Suppose X 18 scattered. Then X is m-Lindelof if and
only if bX is m-Lindelof. In particular, if X is Lindelof and scattered, then
bX is Lindelof. '

Proof. Since bX has a stronger topology than X, we infer that if
bX is m-Lindelof, then X is m-Lindel6f. For the converse, assume that
the conclusion is false and put

v = inf{ay: X is m-Lindeldf, scattered, and dX is not m-Lindelof}.

Choose an m-Lindelof scattered space X such that v = ax and bX
is not m-Lindelof. We claim that v is not a limit ordinal. If v is a limit
ordinal, then

(\D,=90 with D, = D,(X) # O for each a < 7.
a<l?

Since X is m-Lindeldf, {D,: a < 7} does not have the m-intersection
property, 8o z may be written as the supremum of at most m ordinal
predecessors: v = supa;, € I, |I| < m. Choose a cozero cover {U,: 8 € 8}
which refines {X—D,} with |8|<m. Now D, (U,) < D,,nU, =@ if
U<c X—D,, 80 ay, < a; < v and U, m-Lindel6f imply that bU, is m-Lin-
deléf. Then X = (JU, and |8| < m imply that bX is m-Lindelof, which
is a confradiction. Hence we may write 7 = y -+ 1. Since D, is closed and
discrete, we may write D, = {,: 8 € 8} with |§| < m. Let # be a cover
of X by zero sets of X. For each z,, choose Z, ¢ U which contains z, and
a cozero set C, such that z, € 0, and x, ¢ C, for 8 # ¢t. As in the proof
of 5.1, F = X —|_JO, isa closed set, and the definition of v guarantees that
bF is m-Lindelof. Similarly, each C, —Z, is a cozero set, so the definition of =
guarantees that b(C, — Z,) is m-Lindelof. Hence # restricted to Fu{C, —Z,}
has a subcover %’ of cardinal at most m, so # has the subcover
'V {Z,} of cardinal at most m. Therefore, bX is m-Lindelof, which contra-
dicts our choice of r and establishes the theorem.
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5.3. CoroLLARY. If X 18 an m-Lindelof scattered space and each point
i8 a G,-set, then | X| < m.

Proof. The assumptions assure that bX is m-Lindel6f and discrete.

Remarks. (i) If ax is a countable ordinal, one may establish a strong-
er version of Theorem 5.1, namely: if X 48 scattered, countably paracom-
pact, and oollectionwise normal, then bX is paracompact.

(ii) The conclusion of 5.2 for compact scattered spaces has been
previously established by P. R. Meyer. It should be noted that the proof
technique in [12] (based on transfinite induction with respect to dispersal
order) strongly uses the observation that the dispersal order of a compact
scattered space always is a non-limit ordinal, the fact which is not valid
for Lindelof spaces (there are countable subsets of the real line which have
dispersal order w,).

Dr. R. Telgarsky has informed us that, using the proof technique
of [16], the proof of 5.1 can be shortened. He also points out that Theo-
rem 5.2 was announced by Gewand [4] and that it follows from results
of [17] and [18] dealing with topological games.

(iii) Since a topology stronger than a realeompact topology is realcom-
pact, if X is (hereditarily) realcompact, then bX is also (hereditarily)
realcompact.

(iv) Professor Kenneth Kunen has noted in a letter that under the
continuum hypothesis, if X is compact, then bX is w,-Lindeléf if and only
if bX is paracompact. Williams and Fleischman [19] have shown that if
X is a product of finitely many compact linearly ordered spaces, then bX
is 2%-Lindelof.

(v) The statement of Theorem 5.2 can be strengthened as follows:

Suppose a i3 an infinite oardinal and let b, X be the topology having
for a base the intersections of at most a open seis of X. If X is m-Lindelof and
scattered and a < m, then b, X 8 m-Lindelof.

The proof\is a modification of the proof of 5.2. A corollary is the fol-
lowing improvement on 5.3:

Suppose X is an m-Lindelof scattered space with pseudocharacter a
(that i3, every point i8 anm intersection of a open seis). Then |X|< m+a.

5.4. PROPOSITION. A space X isSalmost-Lindelof if and only if X is
Lindelof and X —X| < 1.

Proof. Assume that X is almost-Lindelof. We will first show that
pX—-X|<1l I p,gevX—X,p #4q, let Z, and Z, be disjoint zero sets of
X such that p €Z, and q €Z,. Then Z,nX and Z,NnX are disjoint zero
gets of X neither of which is realcompact, contradicting the fact that X is
almost-Lindelof. To show that »X is Lindelof, write »X = XU{p}. If &
is a cozero cover of »X, choose C € # such that C contains p. Since X is
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almost-Lindelof and p is not an element of the zero set X —C of X, X —C
is Lindelof. Hence # restricted to X —C has a countable subcover #’, so
4 has the countable subcover #'V{C}.

To prove the converse, assume »X is Lindelof and vX — X | < 1. If Z,
and Z, are disjoint zero sets of X, then at most one of the sets Cl(Z7) and
C1(Zq) intersects »X — X. Hence at least one of the sets Z, and Z, is closed
in »X and is therefore Lindelof.

5.5. PROPOSITION. (i) If bX is almost-Lindelof, then C(bX) = Baire(X).

(ii) If C(bX) = Baire(X), then vbX = bvX.

Proof. (i) Suppose bX is.almost-Lindelof and Z is a zero set of b.X.
Since bX is a P-space, Z and X —Z are disjoint zero sets of bX. Therefore,
either Z or X —Z is Lindelof. Since every open set of bX is a union of zero
sets of X, either Z or X —Z is a countable union of zero sets of X. Hence
Z is a Baire set of X.

(ii) Since X is a G,-dense subspace of »X, bX is a G,-dense subspace of
X, and bvX is realcompact by Remark (iii) in 5.3. Hence, to prove
X = bvX, it suffices to show that bX is C*-embedded in b»X. Let Z,
and Z, be disjoint zero sets of bX. Then, since Baire(X) = ¢(bX), Z, and
Z, are zero sets of Baire functions on X, so Z, and Z, are Baire sets of X.
Bach Baire set of X is the restrlctlon of a Baire set of »X. Therefore, -

there are disjoint Baire sets Z, and Z, of »X such that Z‘ NX = Z; for

4 = 1, 2. Since Z1 and Z, are zero sets of b»X, the Urysohn extension
theorem implies that bX is O*-embedded in b»X.

5.6. PROPOSITION. Suppose X is pseudocompact. If C(bX) = Baire(X),
then bX is pseudo-N,-compact. .

Proof. Let {4,: 8 €8} be a discrete family of cozero sets in bX.
Let A, = coz(f,), where f, e C(bX). If 8’ c 8, then

U{4,:8€8} = coz(fg), where fg = Z{f, :8e8'} e0(bX),

80, by assumption, | J{4,: 8 € 8’} is a Baire set in X. Hence {4,: s € 8}
is a completely additive Baire family, so, by 3.4, 8 is countable.

The following result summarizes a number of equivalent conditions
on the Baire topology of a compact space.

5.7. THEOREM. The following statements are equivalent for a compaot

space X:

(i) X 48 scaitered.

(ii) bX 8 Landelof.

(iii) C(bX) = Baire(X).

(iv) X s fumectionally countable.

(v) bX i3 almost-Lindelof.

(vi) bX 18 pseudo-N,-compact.


















