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By a compactum we understand any compact metric space and
a continuum means a connected compactum. We say that a compactum
X is Suslinian provided each collection of mutually disjoint non-degen-
erate continua contained in X is countable. The concept of Suslinian con-
tinua has been investigated in [1] and [5]. Observe that, as implied directly
by the definition of Suslinian compacta, all but a countable number of
open balls with different radii and with a fixed center in a Suslinian
compactum X have zero-dimensional or empty boundaries in X. Con-
sequently, each Suslinian compactum is at most one-dimensional.

We use the following notation. Suppose C is a collection of subsets
of a space. We denote by |C| the union of all elements of C. Given a metric
space X, we define subsets K (X) and L(X) of X by the formulae

(1) K(X)= N|{IntF: Fc X,diamF < n~', F connected}|,
=1

(2) L(X)= N|G: @ c X,diamG < »~', @ connected open}|.
n=1

In other words, K (X) and L(X) are the sets of all poiﬁts of X at which
X is connected im kleinem and locally connected, respectively.

1. Prelimimaries. It follows from (1) and (2) that both K(X) and
L(X) are G,-sets in X.

1.1. If X is a metric space, then Int K(X) c¢ L(X) =« K(X).

Proof. The inclusion L(X) < X(X) trivially holds. On the other
hand, it is easy to see that all components of an open subset of X which
is contained in K (X) are open (compare [4], p. 230). Thus, given a point p
belonging to the interior of K(X), the components of sufficiently small
open balls having p as the center are connected open sets, which means
that pe L(X), by (2).
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Proof. Let G be a non-empty open subset of X. We define inducti-
vely an infinite sequence of continua K, < X such that, forn =1,2,...,

(4) @ #K,,, c IntK, c @,
(5) diam K, < n™%.

First, we can assume X to be non-degenerate; otherwise, the theorem
is trivial. Then there exists an open ball B, with a radius &; < 3 such that
the closure C, of B, is a proper subset of X and C, = G. Let K, denote the
collection of all components of ¢, which intersect B,. Each element of
K, also intersects the boundary of C, in X (see [4], p. 172), so that K,
is a collection of non-degenerate continua. Since X is Suslinian, K, is
countable and, clearly, B, is contained in |K,|. By the Baire theorem,
there exists at least one element K, ¢ K; such that the interior of B, N K,
in B, is non-empty. Thus IntK, # . Moreover, we have K, =« G and

diam K, < diam(C; = diam B, <2¢, < 1.

Assume now K, is defined so that Int K, # @. We find a continuum
K, ., in exactly the same manner as we found the continuum K, above.
One has only to replace G, B,, ¢, %, 0,, K, and K, by IntK,, B, ,,
&nt1y 3(0+1)7Y, Cpyy, Ky, and K, ,, respectively. Thus IntK, , # O,
and both conditions (4) and (5) are satisfied.

According to (4), there exists a point p which belongs to all continua
K, (» =1,2,...). This point belongs also to IntK, (» =1,2,...). By
(1) and (5), we get pe K(X), and the proof of 3.1 is complete, since pe G
as well.

Remark. By 1.1, a stronger theorem than 3.1 would hold if one
could put L(X) in place of K(X). This stronger version of 3.1, however,
is false as can be seen from the example described in 3.2.

Let us recall that a compactum is said to be rational provided it has
an open basis composed entirely of sets whose boundaries are countable.
It is rather apparent that each rational compactum is Suslinian, but the
reverse implication is not true (see [5], p. 132 and 135). By a dendroid
we mean any arcwise connected continuum such that the common part
of each two continua contained in it is a continuum. Each dendroid is
at most one-dimensional and acyclic, i. e. all continuous mappings of it
into the circle are homotopic to a constant mapping. Some properties of
the following example have been possessed by an earlier example of a con-
tinuum constructed by Grace [3].

3.2. EXAMPLE. There ewxists a non-degenerate rational dendroid X

in the plane such that each non-empty connected open subset of X is dense
wn X; hence L(X) = @.
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Proof. In this construction we use rhombi with oblique angles, each
rhombus being considered to be a compact 2-cell in the plane. We also
denote by pq the straight line closed segment with end-points p and gq.
Let (p, ¢, r) be an ordered triple of non-collinear points of the plane, and
let T denote the triangle with vertices p, ¢ and r. We first define a count-
able collection R(p, q,r) of rhombi which form a sequence converging
to pq and which all are contained in 7'. Namely, take a sequence of distinct
points ¢, ¢, ... satisfying the conditions

limg; =g, qeqr\g,r}, dist(g, ¢) < }dist(p, g),
for : =1,2,...

Then choose a sequence of rhombi R,, R,,... in T such that 1_»_q,
is the longer diagonal of R;, the intersection of R; with the boundary of
T is {p, ¢}, and R;nR; = {p} for 4,5 =1,2,... and 7 *j. We put

R(p,q,7) = (B i =1,2,...}.

Next, for each rhombus R, we define a countable collection R(R)

of rhombi in the following way. Let E and rs be the longer diagonal and
the shorter diagonal of R, respectively. Let o be the intersection point

of })—q and rs. The collection R(R) is defined by
R(R) = R(o,p,r)v R(o, q,8) v R(p,0,8) U R(g,0,7).

Given a rhombus R,, we now define collections R, (m=0,1,...)
of rhombi inductively by setting
R, = {Ro}1 Rn+1 = U R(R),
ReR,,
and let

(o2
X =) clR,]|.
n=0
The end-points of the longer diagonal of E, belong to each of the sets
|R,| and it is not difficult to observe that the closures of these sets form
a decreasing sequence of continua; so that X is a non-degenerate conti-
nuum in the plane. Moreover, the set

D, = cdl(X\|R,,,|)

is the union of all the longer diagonals of rhombi belonging to R, v ... U R®
and one sees rather easily that D, is a dendroid (n =0, 1,...). The in-
tersection of each rhombus Re R, , with D, is a degenerate set composed
of an end-point of the longer diagonal of R. Also, the same end-point is
the only point at which E can meet any other rhombus of R, ,. We
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conclude that this vertex of R cuts the continuum cl|R,,,| between some
two points of the set D, ; and, consequently, it is also a cut-point of X.
On the other hand, each thombus ER; of R(p, g, r) has the diameter

) ) . . 3 ..
diam R, = dist(p, q;) < dist(p, q) +dist(¢;, ¢) < rY dist(p, q),

which implies that diam R’ < $ diam R for R’'e R(R). As a result, the di-
ameters of rhombi belonging to R, converge to zero when n tends to in-
finity. It follows that the continuum X has a dense subset of cut-points
and, therefore, no disk is contained in X ; this means X is ope-dimensional.

The continua cl|R,| (» = 0,1,...) do not cut the plane, which one
can readily check by using their definition. Hence X does not cut the plane
either. Since X is one-dimensional, the common part of each two continua
contained in X must then be a continuum (compare [4], p. 505-506).
To see that X is arcwise connected, let us select two points x, ye X and
let 4, be an arc joining # and ¥ in cl|R,|. The set 4, ,, nD,, if non-de-
generate, is a subarc of 4, ,, for n = 0,1, ... Since the common part of
each rhombus of R, , with any other rhombus of R,,, or with D, is de-
generate, we notice that A, can differ from 4, only on the part contained
in the rhombi of R, to which # or ¥ may belong. The diameters of those
rhombi converging to zero when n tends to infinity, the arcs A, converge
to an arc which joins # and y in X. Thus X is a dendroid.

The second important property of X, i.e. that of being rational,
will be demonstrated if we prove the existence of a countable subset
@ < X such that X\@ is totally disconnected (see [6], p. 95). Let By, B, ---
be a sequence composed of all the numbers te [0, 1] of type ¢ = 27%I,
where k and ! are integers. We assume f§, = 0 and 8, = 1. For each rhombus
ReR, (n =0,1,...), we denote by ¢,(R) and ¢,(R) the end-points of the
longer diagonal of R, and we take points g, (R) of this diagonal such that

dist [¢m(R), €o(R)] = Bmdist[go(R), ¢:(R)] for m = 0,1, ...
Then the set

Q@ =U U {Qm(R): Re Rn}
m=0n=0
is countable and @ = X. Let z, ye X\Q be two points arbitrarily chosen.
In order to show that X\@ is totally disconnected, we have to prove
that  and y belong to two different quasi-components of X\@ or, which
is the same, that X\ is not connected between # and y. The following
two cases are to be distinguished.

Case 1. Foreachn = 0,1, ..., at least one of the points «, ¥ belongs
to |R,|. Let n, be large enough so that the diameter of each rhombus of
R, is less than dist(z, y), and let B¢ R, be a rhombus containing one
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of the points z, y, say ve R. Thus y¢ R and either ¢,(R) or ¢,(R) cuts the
continuum cl|R, | between 2 and y. This cut-point belongs to @ and it
also cuts X between the latter two points, so that X\@ certainly is not
connected between them.

Case 2. There exists an n, = 0,1, ... such that none of the points
z, y belongs to |R,, |. Thenn, > 0 and we can assume that », is the minimum
integer having these properties. Consequently, there exists a rhombus
R’¢ R, _, which contains at least one of the points x,y, say zeR'. If

y¢ R’y the argument as in Case 1 can be adopted to show that X\@ is
not connected between x and y. We therefore assume y ¢ R’, which implies
that both # and y belong to the longer diagonal of R’, since neither =
nor y belongs to any rhombus of R(R’) = R, . And we are going to indicate
which subset of @ cuts X between z and y under these circumstances. Let

R,— (R}, R,,= U R([R) fork=0,1,...
RGR;c

and let 0, = cl E,,, where E, denotes the set of ali the end-points of longer
diagonals of rhombi belonging to R;. Then R, < R,,, , and E;c @

(k =0,1,...). Moreover, it follows directly from the definition of R(R)
that the only cluster points of E, which do not belong to E, are the mid-
-points of halves of longer diagonals of rhombi of R;_,, the mid-points
of halves and quarters of longer diagonals of rthombi of R,_,, etc. Those
mid-points, however, all belong to @, whence C, < @ for k =0,1,...
Now, observe that the common part of C, and the longer diagonal of R’
consists of the end-points of 2¥ congruent intervals which form a dyadic
subdivision of the diagonal. The set C, cuts X between each two points
taken from different intervals of this subdivision. Since the length of these
intervals converges to zero when % tends to infinity, there exists an integer
ko > 0 such that the points # and y are located in different two out of
2% intervals, and thus O, cuts X between them.

Finally, to prove the last property of X as stated in 3.2, let us consider
a non-empty connected open subset G of X. The set

1 o0
E = U U{gn(R): ReR,}
m=0 n=0

consists of all the end-points of longer diagonals of rhombi belonging
to R, u R, u ... Since the diameters of rhombi selected from R, converge
to zero when 7 increases, we see that ¥ is a dense subset of X and the proof
will be completed if we show that ¥ c G.

Let Re¢ R, be athombus (n = 0, 1, ...) whose longer diagonal contains
a point of G. The points

P =q(R), ¢=q(B)
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are the end-points of that diagonal; let o be the mid-point of p—q and let
7s be the shorter diagonal of R so that this notation agrees w1th that already

used by us before in the definition of R(R). Then G meets op or oq, say op.
We claim that oe G. Suppose, on the contrary, that o¢ G. There exists

a point ze G Nop and, according to the definition of R(o, p, r), the longer
diagonals of rhombi of R(o, p,r) contain points which converge to z.
Those points belong to X and, consequently, all but a finite number of
them must be in @, the set G being open in X. However, the point o is
the end-point of the longer diagonal of each rhombus taken from the
collection '

R(o,p,r)< R(R)< R,

and o cuts the continuum cl|R, ,| between 2 and each of those points
converging to z. The set G is contained in the latter continuum, which
contradicts the assumption that G is connected. Hence oe G. If G meets

oq, the same argument, with p and R(o, p, r) replaced by ¢ and R(o, ¢, s),
respectively, shows that oe G again.

In a similar manner, using the remaining two collections from the
definition of R(R), that is R(p,o0,s) and R(q, 0, ), one can show that
pe@ and ge@. We conclude that if the longer diagonal of a rhombus
ReR, (n =0,1,...) has a point belonging to @, then both the end-points
and the mid-point of that diagonal of R belong to G.

Since £ < X is dense and G < X is open and non-empty, there is
a point ¢ge £ NG. Let e E be an arbitrary point different from ¢,. Clearly,
we have £ c DyuD, u ... and the dendroids D, form an increasing se-
quence Dy, = D, < ... There exists an integer j, such that D; contains

¢ and e. Let A = D; be the arc joining ¢, and e. The dendroid D; being

composed entirely of straight line segments, the arc A is a polygonal arc
and, moreover, A is the union of a finite chain of the longer diagonals or
of the halves of longer diagonals of some rhombi which belong to R, u ...

..U R; . Since ¢, is the first end-point of the segments in A and ¢,¢ G,

we conclude by a finite induction that the junction points of these segments
as well as the last end-point e all belong to G. Thus F < @G.
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