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SOME INTEGRAL INEQUALITIES OF HARDY TYPE

BY

B. FLORKIEWICZ (WROCEAW)

In the present note we apply the method used in [6] to obtain
certain integral inequalities of Hardy type, i.e. integral inequalities of
the form

(1) [ sinpar < [rihrae,
I I

where I = (e, ), —c0o<a< f< oo, h =dh/dt and p > 1. Inequalities
of the form (1) have been considered by Beesack [2], [3], Redheffer [10],
Benson [4], Boyd [6], Tomaseli [12] and others (for an extensive bibli-
ography see [3] and [9]).

Let us denote by abs O the class of real functions which are defined and
absolutely continuous on the open interval I = (a, ), —0 < a < < oo.
Let p be any real number such that p>1 and let r eabsC and
@ € abs C be functions such that» > 0, ¢ > 0 in I and r|p|* 'sgne € absC.
Let us put

8 = —(rlp|”'sgnp)e'™® and o =r/p/” ' sgng-¢' 7.
LEMMA 1. For every function h € abs C the equality
(2) rlh[? = 8|hi®+ g+ (vlh|?)°

holds almost everywhere in the interval I with g > 0. Moreover, g = 0 if and
only if (¢p~'h) = 0.

Proof. It follows from the assumptions that ov|h|? € abs C. Let
g = r|h|” —s|h|? —(v|h[?)" a.e. in the interval I. If we substitute h = gf,
where f € abs 0, then this equality can easily be transformed as

= r{lof +9f1* — 19f1” —pofipf 1P 'sgn (¢f)} = ro,

® being either of the form « = (4+B)*"—B?—pABP~!, where
A+B>0and B> 0, or of the form w = (4 —B)”—B”+{pAB?~', where
A—B>0 and B> 0. Here we put 4 =¢f or A = —¢f and B = |¢f].
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In both cases we have w >0 and o = 0 if and only if A = 0 (see [8],
Theorem 41, and [1]). Then g > 0 since r > 0, and g = 0 if and only if
of =0, i.e. (p7'h) =0 for ¢ > 0.

Let us denote by H the class of functions h € abs C satisfying the fol-
lowing integral and limit conditions:

(3) [elbPdt > —oo,  [rihPdt < oo;
1 T

(4) liminfolh|? < o0, limsupo|h|® > —oco.
t—a t—p

THEOREM 1. For every function h e H the following statements are
valid:
(i) Both limits in (4) are proper and finile.
(ii) The inequality

(5)

holds.

(iii) If o ¢ H and h % 0, then (5) is a sirict inequality.

(iv) If @ € H, then (5) becomes an equality only in case where h = op
with ¢ = const.

Proof. Let h € H. Since 7|h|? > 0, it follows from (3) that the function
r|h|? is summable in I. Now we prove that the functions s|k|” and (v|h|?)
are summable in every interval (a, b), where a <a < b < f. We have

8|h|? = (r|p|*~'sgn ¢) @' P [h®
and we notice that ¢'~?|h|® is measurable and bounded in {a, b), and the
function (r|p|*"'sgneg) is summable in {a, b), since r|p|*~'sgng e abs C
by assumption. Thus &|A|? is summable in {a, b). Also (9|h|?)’ is summable
in {a, b), since v|h|? € abs O.
Let g = r|h|? —8|h|? —(o|h|?)" a.e. in I. The function g is summable
in <{a, b)> and the equality

limoh® —limo[h|? < f (r]h|? —s|h|P)dt
8 t—a Fe

b

b R
(6) [ribpat = [ sihiPdt+ [ gat+ofhi?}

holds. :
Now, by (4), there exist two sequences {a,} and {b,} such that
e<a,<b,<p, a, >a,b, >p and

limohf?|, < co, Lm(—o[hi?)|, < oco.
A—>00 nN-+00

Thus there exists some finite constant C such that
—olhl’k <0 < oo.
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From this condition and from (6) it follows that
bﬁ bﬂ
f s|h|Pdt < j rlh/Pdt+C,
Gn an

since g > 0 by Lemma 1. Further we have

bn
lim f slh|Pdt = f 8|h|Pdt,
I

fn—>00 a,
since by assumption the integral [ s|h|Pdt exists and the function s|h|®
I

is summable in any interval {a, b> c I. Hence we get the bound

fslh["dt< frlh]’dt+0< 0o.
I I

From the first condition of (3) we conclude that the function s|h|?
is summable in the whole interval I.

In a similar way, using (6), we prove that g is summable in I.

We show that all integrals in (6) have finite limits as @ - a or b — g.
Hence (i) of the theorem follows immediately.

By (6), a8 a - a and b — B, we get the equality

(7) [ribiras = f 8|h|Pdt + f gdt + hmvlhl" —lim v}h|?,
I

f—a

whence we obtain (5), since~y> 0 in I by Lemma 1.
From (7) it follows that (5) becomes an equality for some non-vanishing
function h € H if and only if

fgdt:

I

i.e. g = 0 (a.e.) in I, as g > 0. Due to Lemma 1 we have g = 0 if and only
if (¢p~'h)’ = 0. On the other hand, ¢~ 'k € abs C, and hence b = c¢p, where
o = const 3 0. Consequently, ¢ € H. Now it is easy to complete the proof
of (iii) and (iv).

Now we give necessary conditions for ¢ in order that inequality (5)
may become an equality for some non-vanishing function .

LEMMA 2. The fundtion ¢ belongs to the class H if and only if the fol-
lowing two conditions are satisfied:

(i) [rigiPat < oo;
I

(ii) [ 1slgrat < oo.
I
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Condition (ii) may be replaced by the conjunction of the following two
conditions:

(iii) f 8~ ¢Pdt < oo, where s~ = max(—s,0);
1

(iv) there exist finite limits of the expression r|p|?'sgng -past — aand t — B.
Proof. Let ¢ € H. Condition (i) coincides with the second of condi-
tions (3). We obtain (ii) directly from Theorem 1, where we have proved
that 8|h|? is summable in I provided k e H.
Now, assume that ¢ satisfies (i) and (ii). Condition (iii) follows imme-
diately from (ii). By Lemma 1 for » = ¢ we have ¢ = 0 and from (6)
we get the identity

b b
rlpl®~'sgng-¢|; = [ rip|Pdt — [ sgPat,
a a

where a < a < b < 8. Hence (iv) is fulfilled.

Finally, assume that ¢ satisfies conditions (i), (iii) and (iv). Then ¢
satisfies (3) and (4), i.e. ¢ € H.

Let us note that in the often appearing case of 8 > 0 condition (iii)
is trivially satisfied.

Let H be a class of functions » € abs C satisfying the integral condi-
tions (3), the limit conditions (4) and the limit condition
(8) liminfo[A|? < limsupo|h|?.

t—a t—p

Obviously, H < H. By Theorem 1, conditions (4) and (8) may be

written in the equivalent forms '

(4') limoh|? < o0, limoh|® > —oo,
{—a t—8
(8') limo|h|? < limo|h|?.
{—+a t—p

THEOREM 2. For every function h € H the inequality
(9) [einpat< [ rihpae
I I
holds. If h s 0, then (9) becomes an equality if and only if p~'h = const # 0;
and the additional conditions
(10) peH, limrp|”'sgng-p = limr|p[? 'sgng-¢
{—a t—p

are satisfied.

Proof. By virtue of (8’) and Theorem 1, inequality (9) follows from (5).
If both sides of (9) are equal for some non-vanishing function h ¢ H,



then by (5) and (8') we have

limv|h|? = limo|h|?.
{—+a 1B

Applying Theorem 1 once again we get p e H and h = op, where
¢ = const 7 0. This proves the validity of (10), since vp? = r|p|? 'sgne -¢.
The theorem follows now easily.

Inequalities of form (9), which do not contain explicitly the limit
conditions actually, are said to be of Hardy type (cf. [3]). Let us note that
the condition ¢ € H is not sufficient for inequality (9) to become an
equality.

Now we deal with the class H in the especially interesting case of
8> 0 a.e. in the interval I. In the sequel, let ¢ = p/(p —1).

LeMMA 3. Let h € abs C and let [ rih|Pdt < oco. If

I

t ]
f r 9dt < co  (resp. f r~ 97t < o0)
a ¢

Jor some t € I, then there existis a finite limit value

h(a) = limh (resp. h(B) = limk).
{—a t—p
Proof. Using Holder’s inequality we obtain the estimation
b . b . b b . ,
(11)  |h(d) —h(a)] = | ) hdt]< fihldt < ( ) r“"’dt)l’q( ) rlhl’dt) L
.a a a a
where a < a < b < §. Lemma 3 follows now from the Cauchy condition

for the existence of the limit.

LEMMA 4. Let 3 > 0 almost everywhere in the interval I.

(i) There exist limit values v(a) =limv and o(f) = limv and
v(a) > v(B). {=a s

(ii) If v(a) # O (resp. v(B) # 0), then

t s
f r ¥4t < oo (resp. f r~9Pqt < oo)
a i

for some tel and

v(jr‘“”’dt)m =0(1) at—a

(resp. v(f,r"‘""'dt)’"’l = 0(1) as t — p).
t
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Proof. The function v belongs to the class abs C and satisfies the
differential equation

(12) o+ %r"’”’lvl’+8 =0

a.e. in I. Thus we have —o > s, and integrating this inequality we find
b
v(a)-—v(b)}fsdt>0 for a<a<b<p,
a
i.e. v is decreasing in I, which proves (i).
Let v(a) # 0 and let us consider a neighbourhood of a in which
v # 0. We denote this neighbourhood by U. By (12) we have the estima-
tion

‘ ¢
(13) f"'"’”dt < %f lv|~%dt = |v|~"Psgnv —|v(a)|~¥Psgno(a)

fora<a<t<pfin U. I v(a) > 0 (i.e. v > 0in U), then by (13) as ¢ - «a
we have

]

j r @ <v"? apnd 0< v( j r““"’dt)” <.
If v(a) < 0 (i.e. < 0 in U), then by (13) as a — a we obtain
j' r¥dt < lv(a) """ and v(a)|t < v( f r“”dt)’ " <o.
Thus in both cases we get
jr"”’dt< oo and v(fr"“"'dt)p’q =0(1) ast—a,
which proves (ii).

We denote by H, (resp. H®) the class of functions 4 € abs C satisfying
the integral condition

(14) f r|h|Pdt < oo
1
and the limit condition
(15) liminf|h| = 0 (resp. liminf|h| = 0).
t—a t—p

In the sequel, (15) is equivalent to

(15’) h(a) =limh =0 (resp. A(B) =limh = 0).
t—a {8
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THEOREM 3. Let 8 > 0 almost everywhere in the interval I.

(i) If v(a) = oo and v(B) >0, then H = H,.

(ii) If 0 < v(a) < oo and v(B) > 0, then H > H,.

(iii) If v(a)< 0 and v(f) = —oo, then H = H°.

(iv) If v(a) <0 and —oo < v(f) <O, then H > H°.

(V) If 0<v(a)< o0 and —oo < v(f) <0, then H = H,nH'.

Proof. Let v(a) = o0 and let h € H. Then by Lemmas 4 and 3
there exists a finite limit value

h(a) = limha.
t—a

If A(a) # 0, then
limojh|? = oo,
(]

which contradicts (4’). Thus h(a) = 0, i.e. h € H,. Similarly, we prove
that if v(8) = —oo and h € H, then h e H'.

Let 0 < v(a) < o0, —0 < 2(f) <0, and h e H. Then by Lemmas 4
and 3 the values %(a) and A(p) are finite. Further, we have

limva|® = v(a)lh(a)*>0 and limo[hl® = o(B)A(B)* <0,
t—a t—B

and by (8’) we obtain v(a)|h(a)|® = v(8)|A(B)|® = 0. Hence, it follows that
h(a) = h(B) = 0, i.e. he HynH".
Let v(a) > 0 and % € H,. Then h(a) = 0 and we have the estimation

(16) 0< b < o( f r“""dt)”’“ f r|h|Pdt,

which follows from (11) for @ —> a and b = ¢{. Hence, by Lemma 4 and
condition (14), it follows that

limy|h|? = 0.
t—a
Similarly, if »(8) < 0 and h € H° then

Limo}hl® = 0.
t—-p

Let v(a) > 0, v(8) >0, and h € H,. Then
limoj|? =0 and limo|h|? >0,
t—a -8
so that (8’) is satisfied. Hence we infer that A € H. Similarly, if »(a) < 0,
v(f) < 0 and h € H°, then h € H.
Finally, let 0 < v(a) < o0, —oo < 9(f) <0, and h e H,NnH’. Then
we have

limojh{? =0 and limoh|® =0,
t—a t—p
whence h € H.
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Remark. In [3] inequality (9) is studied for k € H, (resp. h € H°)
under the additional assumption that

v( f‘ r“”’dt)p’" =0(1) ast->a

’ .
(resp. v(fr“’”dt)m =0(1) as t — ).
t

By Lemmas 3 and 4 this assumption may be omitted (it follows
from other assumptions).

Theorem 3 in cases (i)-(iv) may be strengthened as follows:

THEOREM 4. Let 8 > 0 almost everywhere in the imierval I.
(i) If v(B) = 0, then for every fumction h € H, the inequalily

(17)  8inPdt+limo[al? < f r|h|?dt
I L4 I
holds. If h O, then (17) becomes an equality if and only if ¢™'h = const +# 0
and the additional conditions
(18) ¢ € H,, li.x:;rld»l"‘sgnév-qv =0
are salisfied. If v(B) > 0, then there ewists a finite limit value
h(p) = lima
8
and (17) takes the form
(17') [elhiPat+o (BRI < [rihiras.
I I

(i) If v(a) < O, then for every function h € H® the inequality
(19) [ siniPat —limolhl? < f r|h|Pdt
I i

t—>a

holds. If h # 0, then (19) becomes an equality if and only if ¢~'h = const
#* 0 and the additional conditions

(20) geH’, limr|p/" 'sgng-gp =0
t—+a

are satisfied. If v(a) < O, then there exists a finite limit value
kh(a) =limh
t—a
and (19) takes the form
(19') [ sih?dt —v(a)ih(a)l? < [ rih|?dt.
I i
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Proof. We prove only (i) (case (ii) is to be proved similarly).
Let v(f) > 0 and let h € H,. Then by Lemma 4 (i) we have v(a) > 0.
Thus (16) holds. Further, by (16) and Lemma 4 (ii) we get

limy|h|P = 0.

t—a

Obviously, & € H, since H, « H « H (Theorem 3 (i) and (ii)). Hence,
by Theorem 1 (ii), from (5) we obtain (17).

If h s 0, then by Theorem 1 (iii) and (iv) and by Lemma 2, we get
immediately the conditions for the equality to hold in (17).

If v(B) > 0, then by Lemma 4 (ii) we have

p
[ rvrat < oo,
H

and by Lemma 3 there exists a finite limit value
h(B) = li-m}",
8
which completes the proof.

Example 1. Let us take I = (a, ) with 0<a<f< 00, r =t"°
and ¢ = tVP where a 1 is an arbitrary constant.
If a = 0 and f = oo, then by Theorems 3 and 4 we obtain the ine-
quality
(- -]

la—1\* F _, o}
(21) ( - ) f o hiPdt < f =9} |7t

0

which holds for h e H; if a > 1, then H = H,, if a <1, then H = H".
The equality in (21) holds only for A = 0. Inequality (21) is well-known
Hardy’s integral inequality (cf. [8]), Theorem 330, [7], [2]).

If a =0 and f < oo, then by Theorem 4 (i) for a>1 and A # 0
we obtain the inequality

a—1\? [ ~ [a—1\""1 ! .
22 —_ t~%hiPdt + | —— 1=a\h (B)|P tP=%h|Pdt
(22) (p)! i +(p) ﬂnwn<! |

which holds for ke Hy. If a > 0 and g = oo, then by Theorem 4 (ii)
for a <1 and h s 0 we get the inequality

(23) ( ) f t=°|h/Pdt + —;—)p 1a"“|h(a)]’< f t*=%|h|Pdt

which holds for k € H°. Paper [11] is devoted to the derivation of ine-
qualities (22) and (23).

In the interval I = (0, c0), by Theorems 2 and 3, one can obtain
the inequalities with more general substitutions, i.e. r = 1%, ¢ = *(1+)},
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8 = yt%(1+ )%, where a,b, k%, 1, a,  and y are some constants. The con-
stants should be chosen so that the equation (r|p|’ 'sgng) +sp?! =0
be satisfied. Those inequalities contain all inequalities of the same
type which have been considered in [2]. Similarly, by Theorems 2 and 3,
taking I = (0,1),r =%, ¢ = t¥(1 —t*)' and 8 = pt°(1 —1°)%, where a, b, k, I,
a, f# and y are some constants, we obtain the class of inequalities which
containg the remaining inequalities of [2].
Example 2. Let I = (0,1), r =1 and

L 4
t =Lgin T f (1 —a?) V7da,
T P
Then by Theorems 2 and 3 we get the inequality
p . —p 1 1
(24) (p—1)( - sin— f (h(Pdt < f lh|Pdt
T
0 0

which holds for A € H,; it becomes the equality if and only if A = op,
where ¢ = const (cf. [8], Theorem 256, and [2]).
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