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NUMBER OF ALGEBRAIC OPERATIONS
IN IDEMPOTENT GROUPOIDS

BY
J. DUDEK (WROCLAW)

Let A be an algebra. We say that an n-ary operation is essentially
n-ary if it depends on every of its variables. We denote by w, = w,(U)
the number of all essentially n-ary algebraic operations of U (cf. Mar-
czewski [2]). The aim of this paper is to find the minimal numbers o,
for idempotent groupoids. Let us recall that for 2-dimensional proper
diagonal algebras (cf. Plonka [4]) we have w, =2 and 0 = w3 = 0w, = ...,
and that for semilattices there is w, =1 for n =2, 3,...

The following shows that these groupoids are exceptional:

THEOREM. For every idempotent groupoid G (with the exception of
semilattices and the 2-dimensional proper diagonal algebras) we have
0, (G)=n for n> 3.

If @ =(G,-) is an idempotent groupoid (and the operation - is
essentially binary) we define the sequences of simple iterations of the
operations x-y and y-x (cf. Marczewski [3]):

Jo(@y, ) = @, - 2,, Jos1( @1, oy ooy Ty Ty yy) =f2(fn(w17 Loy eeey Ly ), 50n+1)7
92 (@1, B3) =Ty 1, gy (24, Ty eevy Tny Zpy1) = gz(gn(-'”n Doy enny Ty), $n+1)-

In the sequel f, and g, always denote these iterations.

LEMMA 1. In every idempotent groupoid, if f, is essentially n-ary,
then f,., depends on the variables x,, &y, ..., @, and on one at least of the
variables x,, x, (an analogous statement is valid for g,.,).

Proof. The operation x-y is idempotent, so
fn+1($27 Loy Lyy eony Bpy Lyyy) = Jfol®2y @3y ..., @, wn+1)'

This and the fact that f, is essentially n-ary gives Lemma 1.

LeMMA 2. If the operations f,; and g, of an idempotent groupoid G are
not essentially ternary, then G is a 2-dimensional proper diagonal algebra.

Proof. Let us first remark that if f, (or g;) is not essentially ternary,
then the operation z-y is not commutative. Indeed, if it were commuta-
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tive, Lemma 1 and the equality f(x,, 2, #3) = f(®,, ©,, 3) would result
in contradiction with the assumption. Hence the operation - is not
commutative and, according to Lemma 1, we have either

(1) J3(@1y @3y @3) = @y 25
or
(2) fa(@yy @gy @3) = @y 5.

By applying (1) and Lemma 1 to the operation g; we get

Xy Xy = f3(@1y Tay X1 T3) = g3(@2y Ty, Xa);

a contradiction, because there is either z,-2, = w,'x; or z,'7, = ,.
Analogous proof shows that equality (2) contradicts the equality
g3(@y, 5, ©3) = 232, and so we come to the conclusion that G satisfies
the equalities -2 =« and (z-y):2 = 2-(y-2) = -2z of a 2-dimensional
proper diagonal algebra (cf. Plonka [3]); thus Lemma 2 is proved.
By (¢) and (y) we denote propositions saying that all of the opera-
tions f, (or g, respectively) are essentially n-ary.

LEMMA 3. Each idempotent non-diagonal groupoid G satisfies either
() or (v).

Proof. Suppose that non-(p) and non-(y). Then there exist the
least integers n and m such that the operations f, and g, do not depend
on all of their variables. According to Lemma 1 the following equalities
are fulfilled in the groupoid G:

(3) Jo(@yy Zay ovy @) = fao1(®1y Tay Ty oovy Bpyyy Ty)
or

(4) @1y @ay ooy @) = fro1(@2y Tay Bay ooy Ty 2),
and

(5) I (T1y Ty ovvy B) = Goue1(@ay Tay Tay oevy Tp_1y Tn)
or

(6) G (B1y oy oovy B) = Gone 1 (X1 Tgy Tay evey Tpo—1y Tn) -

Without loss of generality (because of Lemma 2 and of the assumption
of this lemma) we can take n > 4.

Putting =, = f,_,(#1, %2y ..., ®,_;) In (3) and (4) we get
(7) Jn-1(@yy @ay ooy Ty_y)

=43 (wn—17fn—2 (@1 Tay ooey Bp_2)y froa(B1y Ty -+ o wn-l))’

(8) Jno1(@1, Ty onny Ty_y)

= 0s (xn—ufn—z(wu Loy eeny wn—2)7fn—2(w2’ Tgy eeey wn—l))‘
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If we now multiply (7) on the left m — 3 times by f,_, (%1, %3y ..., ©,_,)
and after every multiplication use (3), we get
(9) Jno1(@1y Bay oy y_y)
= Gm (mn—11fn—2(w19 Doy veey By_3)y fr—2(®1, Tg, [EEY) Zp_1),
cory Jrno2(@1y @3y ..oy wn—l))'
If (6) is satisfied, then the right-hand side of the last equality is

independent of z,, and so (3) and (6) contradict each: other; and if (5)
and (9) are satisfied, then

Ja1(®yy @ay ooy @, y)
= gm(wn—nfn—z(.wl’ oy B _g)y fa @1y @3y onvy @, _4), ‘
Jo—2(@1y @ay ooy @y 1)y ovey Froa (@1, Zgy ..,y "I’n—l))
= gm(wn—z,fn—éi(wl’ Doy eovy Bn_3)y fug(T1y Tgy oovy Tpy)y
Jn2(®1y Bay ooy @p1)y oey fua (@1, @s, R ‘vn—l))
= e =gm(wz’mlafn-z(wl’msy"-137 -1)s N
Ja—2(@1y @ay ooy @y 1)y oney fra (@) @3y oony a’n—l))
= gm—l(mufn—z("vu Byy oeey Tp_1)y Fra(@ry Byy ony ny),
vovy froa (@1, 3, "'7$n—1))°

This proves that fn_l(wl, Tay -+ &,_,) does not depend on x,, and
80 (3) and (5) cannot be satisfied simultaneously. If we assume (4), we
get from (8) in an analogous way the formula

(10) Sn-1(®1y @3, .. .y Bpy)
= gm(mn—17fn—2($17 m27 AR ] wn—z)ifn—z(wz, -'173, ey azn—l)’
Ja—a(@2y Tay ooy @y y)y oeey froa(@2y «.ry w‘n——l))‘

If (4) and (6) are satisfied, then we get a contradiction in view of
(10), because f,_,(z,, z,,...,,_,) depends on x, and the right-hand

side of (10) does not. If (5) and (10) are satisfied, then the right-hand
side of (10) takes the form

9m—1(fn—2(w1, Bay eeey Tp_3)y froa(@ay Tay ovvy By_y)y fra(@2y Tay oo ey w”.‘l)’
voryJu—2(@gy Tgy oury wn—l))
I (Bn—2y Frs (@1, @s, ooy Bp_3)y froa(Bay Bay'eo oy Bnoy),
Jn—2(®2, 25, coey Bp_1)y ooy fr2(@2y sy ""‘wh"l))
=i =Gpm (wl'%’fn—z(wz, Bgy voeyPp_1)y frlo(Bay Dgy oony Tn1)y )

woosJnaa(Bay Tay -y wn—l)xi' L
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= gm(wzy B1y frn-2(@ay Tay eeey Tp1)y fr2(@2y gy ooy Tp_y),
very Jn—2(®2y @y ..., w’n—l))
= Im—-1 (wlyfn—z(-’”z’ Tgy eeey Tp_1)y n—a(@ay Tay ooy Tpy),
voos Jua(@ay Tgy ooy a’n—l))
= o1 @1y B2y oovy @) = gm(wlrfn-z(mzy Zgyeeey Bpy_1)y
vooy foo2(@ey @5y ..., “"n—l))
= fa—2(@ay Tgy o0y B, _y).
So (5) and (4) cannot be satisfied simultaneously, because otherwise
fn_1 would not depend on its first variable. Thus Lemma 3 has been proved.

LeEMMA 4. If an idempotent non-diagonal groupoid G satisfies non-(g)
(or mon-(y), respectively), then w,,(@G)=m for m =2,3,...

Proof. Suppose that non-(p) (the proof is analogous if we suppose
that non-(y)). Then either (3) or (4) is satisfied and we conclude from
Lemma 3 that g, (%, Tpr1y .0y Ty 1y Loy ..oy Tp_;), Where m = 3,4, ...
and k¥ =2,3,...,m, are essentially m-ary. Suppose that for different
integers ¥ and ! we have

(11) Im Ty Tpins ooy By iy Loy ooey Ty_y)
= g (%1, Lypyyeeey Ty Bry Loy oeny Ly_y).

Using (3) and (11) we get

fn—l(gm(wk7 Lpi1y ooey Py L1y Loy ooy Tp—1)y Y2y Ysyreeey ?/n—l)
=fn(mk—17 Im—1(Zks Tie1y ooy Tmy L1y Ty oeey L_2)s Yay Y3y -« oy yn—l)
= fa1(®Bi—1y Y25 Y3y -+ 9 Yn_1)
=fn—1(gm(m11 Typryeeey Ty L1y Loy eoey By_1)y Yoy Yy -oey yn—l)
= fn(wl—li Im-1(Zps Tpy1s eevy Ty By Tay oeey By_a)y Yoy Y3y ooy ?/n—1)
= fn-1(T1_1y Y2y Yay « vy Yn-1)-

It means that f,_, does not depend on its first variable. Using ana-
logously (11) and (4) we come to a contradiction with the assumption
on the operation f, ,. So we have w, >m for m =2, 3, ...

LeMMA 5. If f(2,, 5y ..., T,) I8 an arbitrary essentially n-ary algebraic
operation of the idempotent groupoid G which satisfies (¢) or (), and if
fl@y, xs, 3, ..., x,) does not depend on all of its variables, then w,,(G) = m
for m =2,3,...

Proof. In virtue of the assumption on the operations f and
flz-y, zyy 24, ..., 2,) one of the following equalities holds in G:

(12) f(@-y, @2y Xgy ooy @) = F(Y, Tay T3y eeny By)y

(13) f(@y, @y Xgy ooy @) = f(@y @py Tgy 000y @)
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Suppose that (¢) is satisfied (the proof is analogous if we suppose
that (y) is satisfied), and suppose that for different k¥ and ! and for some
m we have
(14) T @iy Tgry +oy Ty Bry Loy oovy B_y)

= fo @1y Brpyy ooy Ty T1y By ooy Byy)©
Then
f(fm(mk’ Zpry ooy Loy L1y Loy eeny T_1)y Y253 Ygy ooy ?/n)
= f(fm—l(wk’ Lppry eoey Tipy L1y Loy <oy mk—-z)'wk—u Y29 Yzy eeey yn)
=f(fm(wl7 wl+1’. veey Ly Lyy Loy ooey Ly_1)y Y2y Yzy evey ?/n)
=f(fm—1(wl’ Bppry eees Ty L1y Loy ooy Ly_g) By_1y Yoy Ygy oees yn)'

If (12) or (13) holds, we conclude from the last equality that f does
not depend on its first variable, what obviously contradicts the assumption.
Hence (14) does not hold for ¥ # I, and so w,,(G) = m.

LEMMA 6. If f is an arbitrary essentially n-ary algebraic operation
of the idempotent groupoid G which satisfies (@) and for a ky we have w (G)
< kqy, then the operation
f(fm(wu Ty oeey @)y Yoy Yas ooey :'/n)

depends on all of its variables; if G satisfies (y), then the operation

f(gm(wly Doy eeny Om)y Yoy Ysgyoeey yn)

depends on all of its variables.

We give a proof by induction on m in the case in which G satisfies
(p). If m = 2, the thesis follows from Lemma 5. Suppose that the thesis
of the lemma holds for a fixed m > 2. Then, according to the inductive
assumption and Lemma 5, the operation

f(gm+1(m17 Loy eoey Tyy1)y Yoo i‘/s’ cesy yn)

= f(gm(wz‘wu Dy oeey Bmi1)s Yoy Ysy oo oy ?/n)

depends on all of its variables. Thus the lemma is proved.
Let us now introduce a definition: the operation f(x,,x,, ..., o,)
admits the permutation oeS, if

@y, @ay ...,y @) =f(wa(1)’ Do(g)y +++9 Zom)) +

The permutation

(1 2 .. n—k+1 n—k+2 ... mn
kE k+1 ... =n 1 k—1

will be denoted by of (k =2,3,...,2).
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LEMMA 7. If the idempotent groupoid is mon-abelian, the operation
fp (and g,, analogously) does not admit any permutation ok for any prime p.

Proof. Let p > 5 and suppose that for a k, the operation f, admits
ok, Then f, admits every permutation o, because p is prime.
First we prove that the binary operation

for(@, @y 2,9,9,...,9)

(p+1)/2 times
is commutative. Indeed,

fp+1(w7w7 ey Xy Yy Yy Y) =@,y T, Y, Y, Y)Y
:fp—l(?h?/’ ey Y, 2,2, ’w)y =fp(:’/7 Yy ooty Yy 2y %,y ..., ¥, ?/)
=Yy 0y Yy Ty &y ..., B) :fp+1(3/’ Yyoos Yy Xy Ty .00y X),

— —

(p+1)/2 times
whence

zy =fpl@,2,y...,2,9) = fpoly,2,2,..., o)

=f(p—1)/2(fp+l(y7 Yyeotd Yy &y Ty ooy w)y LyLyouey '”)
\—— — N — ———
(p+1)/2 timee (p—3)/2 times

=f(p-—l)[2(fp+1(w7 Zyeery @y Yy YyereyY)y Ty &y ouny w)
\— —
(p+1)/2 times

= f(p—l)/2(f(p+3)[2(w7 ByYyYyoeesY)y Ty &y .ony w)
\— —
(p+1)/2 times

=fo(@ ¥, Yy ooy Yy @, @y o @) =Fp(@, @, 0oy B, 9,8,y .y Y)

=fp+l(x?m7 ey Yy Yy ey Y).
—— m—
(p+1)/2 times

It means that the operation x-y is commutative, which contradicts
the assumption.

For p = 2 the lemma is obvious, and if p =3 and f, admits the
permutation ¢, then the following equalities hold:

Ja(@1y @2y @3) = f(@sy sy @) = fa(@sy @1y 35).
Putting »; = z,-x, in the last equality, we have

@y Ty = f3(@y Tay Tyy Tz) = fa(@yy Doy 1) @ = fa(@y, @1, T2)" T2

= fa(@y, ®g, @3) = f3(@s, @2, @) = 2524,

a contradiction.
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LemMmA 8. If
f=f@, &5y ..ci2,) and g = g(Y1y Y2y -eey Ym)

are idempotent operations, if f does mot admit any permutation o and g
does not admit any permutation o),, then the operation

A

f(g)(wn 2 R wn-m)

=f(g(w1, Loy eeey Cm)y §(Zmi1s Tmpay ooes Lom)y ooey g(w(n—l)m+l7 °'°7mn-m))

does mot admit any permutation o,*,.
Proof. Suppose that f(¢) admits the permutation o,%, and let

k =(s—1)m+1, where s =2,3,...,n Then
J(@1y @oy .oy @)
=f(g)(w1’w19---;wlawmwz’"-’wz’---1wmwn’"-7mn)
=f(9)(ws’ws’---’ms’$s+1’ms+17---"”s+1’---’a7mwn’

ey Ly Byy Byy ooy Byy By By eevy Bayeeey By 1y By 1y ooy By_y)

= f(@gy Byy1y eovy Tny B1y Tay o ovy Ty_1)y
which contradicts the assumption of the lemma. And if k# (s—1)m-+1
for s =2,3,...,n, then there exists an » such that 2 <r <m and
gLy, Bay o ooy Tpy)
=f(g)(w1, Loy eoey By L1y Loy ooy By evey Bry Loy oeey By)
=f(g)(m,, Lpi1y eeey Ty L1y Loy ooy p_19 Ty Tpyyy
ey By By Doy eeey Bp_1y Bpy Bpy1y ooy Tiny 1y Bay oevy Tp_y)
= g(=,, Lpp1y eeey Ty L1y Loy oeny Z,_1)

which contradicts the assumption on the operation g. Thus Lemma 8
is proved.

Now for each prime p we define inductively some sequences of al-
gebraic operations of the groupoid G; namely,

FO (@1, @y vy Bp) = fop(@1y gy oeny Tp),
F) (@1 @gy ...y Tpn+1) = st’) (fo) @1y gy - ooy Bpnt1).
Analogously, we define the sequence G starting with g,.
LEMMA 9. If an idempotent groupoid G satisfies (p) and w0 (@) < ko

Jor a ky, then for every p and n the operations F® depend on all their variables
(analogous proposition holds for G® if (v)).

Proof is by induction on #» and uses Lemma 6.
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LEMMA 10. For every idempotent non-abelian groupoid the operations
F® and GP do not admit any permutation okn.

Proof immediately follows from Lemmas 7 and 8.

Now we can prove the theorem in the case of non-abelian (idempo-
tent and non-diagonal) groupoid. Suppose that we have w, (G) <k,
for a k, =pl'p32... pr* (P1, P2y ...y Pr are primes). According to
Lemmas 3 and 4 we can assume that the groupoid G satisfies (¢) and (),
and from Lemmas 9 and 10 we conclude that Fﬁgf) g =1,2,..., k)
depend on all their variables and do not admit any permutation of the
type o'. Then, in view of Lemmas 6 and 8, the operations

H, =F3), H,=H(F),...,H =H,_ (FP)

depend on all their variables and also do not admit any permutation
of the type o’; however, the operation H, is essentially % -ary and does
not admit any permutation o};o, whence o, (G) > k,, which ends the prootf
of the theorem in this case.

Now we take the case of an abelian groupoid.

LEMMA 11. If G is an idempotent abelian groupoid, then, for every m,
fo = 9, and f, is essentially n-ary.

Proof. For n = 2 the lemma is obvious. Idempotency and commuta-
tivity of the operation - and Lemma 1 imply that if f, is essentially n-ary,
then f,,, is essentially (n-1)-ary.

LeEMMA 12. If G is an idempotent abelian non-associative groupoid,
then for n > 3 the operation f, does not admit any permutation g, = (k, k+1)
of the set {1,2,...,n}, where 2<k<n—1.

Proof. The operation z-y is not associative and hence we have
the thesis in case n = 3. Suppose that f, does not admit any permutation
0r 2<k<n—1) and let

fn+1(w17 Ly eeey Tpy Tpyr) = fu(@1y oy o0y ) Ty

admit the permutation g, for 3 < k < n. Then, putting x, = 2, in the last
equality, we get the contradiction with the inductive assumption. And if

Jai1(Try oy ovvy Buy By1) = Frp1 (@1 Bay Ty By oovy By Tpta)
then for x,., = f,(#,, 2y ..., 2,1, 2,) We have
Ta(@1y @ay ooy @) = Fo(@ry Ty Doy Tay ooy @) [ (1) Ty B3y Tay - o0y )
= fu @1y Zay Bay Tay ooy @) fo(B1y Tay Ty Bay v vy Tp)
= (@1, T3y Tay Tay ooy ) [ (X1y Tyy Toy Tay ooy B)

= fu(®1, T3, Tgy Xyy ..., ).
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This proves that f, admits the permutation p,, which contradicts
the inductive assumption.

LeMMA 13. For every idempotent abelian non-associative groupoid G
the operations f, do mot admit any of the permutations o¥.

Proof. In fact, if for 2 < k¥ < n—1 the operation f, admitted the
permutation ¢%, then, the operation -y being commutative, the operation
fn, would admit the permutation g,, which contradicts Lemma 12. And if

Fa(@1y @ay oovy @) = fo @y @4y @2y ooy @, 4),

f, would admit p,, which also contradicts Lemma 12.

If the abelian idempotent groupoid is not a semilattice, the theorem
follows from Lemmas 11 and 13.

Let us remark that the equality in the thesis of the theorem cannot
be improved as there exist groupoids for which w, = » (Plonka [5]):

I would like to thank Professor E. Marczewski and Dr. S. Fajtlowicz
for their valuable remarks which helped me in the preparation of this
paper. The results of this paper were announced in [1].
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