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ON COONTINUA
HAVING THREE TYPES OF OPEN SUBSETS
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We proved [1] that every compact metric space having finitely many
types of open subsets is totally disconnected. This implies that every
metric continuum has infinitely many types of open subsets and leads
to the problem of existence of non-metric continua having only finitely
many types of open subsets. In this paper we consider non-metric continua
having exactly three types of (non-empty) open subsets. We showed in [1]
that such continua are perfectly normal and here we prove that they
are indecomposable and homogeneous.

Let X be a continuum (i.e., a compact connected Hausdorff space)
and let F be its closed subset, @ # F # X. By X /F we mean the space
which can be obtained from X by shrinking F to a point which will be
denoted by [F']. The expression @, : X — X /F denotes the quotient map.
The phrase X —F = UUV 48 a separation (and all phrases like that)
means, besides the equality of sets, that U and V are open in X, non-empty
and disjoint. For instance, a point p is a cut point of X (p cuts X between
g and r) if there exists a separation X —{p} = UUV (such that ge U
and re V).

A partially ordered set (¥, <) is said to be a pseudotree (tree) if the
set {g € B: ¢< p} is linearly ordered (well ordered) for each p € E.

Let X be a continuum such that the set R of its cut points is non-empty.
For a given p € R we define a relation < on R by assuming ¢g<<rif ¢ # r
and either p = q or p # q and ¢ cuts X between p and r,

The following two lemmas are ebvious:

LEMMA 1. The relation < is a partial order on R. In addition, (R, <)
i8 a pseudotree.

LEMMA 2. Let L < R be a chain. Then there exists a family of separations
X —{r} = U,VV, for r € L such that

(*) p e U, foreachr e L—{p}andifr,seL,r<s,then U,u{r} < U,.
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Let Y be a non-degenerate continuum. Then Y contains at least
three topologically distinet open subsets. One of these subsets is Y itself.
Among non-compact subsets there are connected and disconnected ones;
the existence of connected ones follows from the existence of a non-cut
point of Y ; the union of two disjoint open subsets of Y is an example of
a disconnected open subset of Y.

Let X be a continuum having only three types of open subsets. The
following lemma follows from the observation as above:

LeMMA 3. (a) Every (non-empty) connected open subset of X is equal
to X or is homeomorphic to the complement of a non-cut point of X. Thus
every two connected open proper subsets of X are homeomorphic.

(b) Bvery two disconnected open subsets of X arc homeomorphic.

Let us recall the following two lemmas frown [1]:

LeMMA 4. If U is a connected open subset of X, then U is dense in X.

LEMMA 5. The continuum X is perfectly normal.

COROLLARY 1. The continuum X has the Souslin property.

This corollary follows from Lemma 5 because X is compact.

LeEMMA 6. If F i3 a closed subset of X, @ # F # X, and X —F 1is
connected, then X |F is homeomorphic to X.

Proof. The set X —F is homeomorphic to the complement of a non-
cut point ¢ of X. Hence X /F, being homeomorphic to the Alexandroff
compactification of X — F, therefore also of X —{q}, is homeomorphic to X.

LEMMA 7. The continuum X has no cut point.

Proof. Assume, to the contrary, that the set R of all cut points
of X is non-empty.

(1) If ¥ is a closed subset of X, # F # X, then X [F i8 homeomorphic
to X.

Indeed, X —F is homeomorphic to the complement of a point in X.

(2) The set R is dense in X.

First we show that R has at least two points.

Let p e R. Let X —{p} = UUYV be a separation and let F = V be
a closed set having a non-empty interior. By Lemma 4 the set X —F

is disconnected, so [F'] is a cut point of the continuum X /F which is, by
(1), homeomorphic to X. Thus X /F has at least two cut points, namely
[F] and @x(p)-

To prove the density of R, assume that U is an open subset of X,
@ # U # X. Let F = X — U. The space X/F is homeomorphic to X, so
it contains a cut point ¢, ¢ # [F]. One can see that Qz'(¢) € U is a cut
point of X.

Now, let p € R and let < be the partial order on R defined as above.
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Let L < R be a maximal chain. And let a family of separations X — {g}
= U,V , for q € L satisfy condition (*) from Lemma 2.

(3) The chain L has mo greatest element.

Assume that 8 € L is the greatest element of L. The set LNV, is empty
because U,u{r} = U, < X —V, for r e L —{8}. But, in view of (2), there
is a point ¢t € V,NR. One can see that LU {t} is a chain and ¢ ¢ L. This
contradicts the maximality of L.

Let Ay = N{V,v{g}: ¢eL}.

(4) The point [A.] 8 a mon-cut point of the continuum X[A; and
[4.] is a point of local connectedness of X [A; .

Indeed, L has no greatest element, so

X—-4, =J|U0,9{g}: qeL}.

Hence X —A; is connected. But X/A,—[A4,] is homeomorphic
to X —A,, 8o it is connected as well. The point [4,] is a point of local
connectedness of X /A, because A4, is the intersection of a decreasing family
of closed connected sets and is contained in interiors of these sets.

(B) The continuum X is locally connected at points of the set X —R
and 18 not locally connected at points of the set R.

This holds because if ¢ e X — R, then X — {q} is homeomorphic to
the set X — A, so ¢ is a point of local connectedness of X. On the other
hand, by Lemma 4, the continuum X cannot be locally connected. Since
for every two points , 8 € R the sets X — {r} and X — {s} are homeomorphic,
the continuum X is not locally connected at any point of R.

(6) The set R is uncountable.

Indeed, R is the set of all points at which X is not locally connected,
80, by the Frolfk theorem [2], the set R contains a non-degenerate con-
tinuum of convergence.

(7) The chain L ts well ordered by <.

Let @ # A < L. Assume that A has no least element. Then p ¢ 4 and
ULV, v{g}: e A} = U{V,: ¢ € A}. Hence the open set U = | J{V,: ge 4}
is connected and is not dense because Un U, = @, which contradicts the
conclusion of Lemma 4.

(8) Every antichain in R is at most countable.

Let B be an antichain containing at least two points. Then p ¢ B.
For each g € B let X —{q} = W,UZ, be a separation such that p € W,.
We show that for distinet points g, r € B the sets Z, and Z, are disjoint.
Let q,r € B, ¢ # r. The point g does not cut X between p and r,80p, r € W;
analogously, p,qe W,. Thus r¢Z,U{q} and qe W,, whence Z,U{q}
< W,< X —Z,. By Corollary 1, the space X has the Souslin property,
80 B is at most countable.
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(9) There exists a maximal chain M < R which is tsomorphic to the
ordinal y > o +1.

Indeed, R is an uncountable tree every antichain of which is at most
countable.

To complete the proof, let M = {g,: a< y}, where y > w-+1, be
a chain in R. Let a family of separations X — {¢,} = U,UV, for a< y
satisfy condition (*) from Lemma 2. Consider the set W = (J{U,U{g,}:
n < w}. The set W is connected and, for ¢, € U,,;, open. But W < U,
< X—-V,, s0 W is not dense. This contradicts the conclusion of Lemma 4.

COROLLARY 2. The continuum X i3 homogeneous.

Proof. Indeed, no point cuts X, and so, by Lemma 3 (a), for every
two points p, ¢ € X the sets X — {p} and X — {q} are homeomorphic.

COROLLARY 3. The continuum X has mo point of local comnectedness.

Proof. Indeed, by Lemma 4, the continuum X has a point at which
it is not locally connected. Hence, by Corollary 2, it is not locally connected
at any point.

LeMMA 8. If U 18 an open disconnected subset of X, then every compo-
nent of U has an emply interior.

Proof. Assume that the set U has a component with a non-empty
interior. Hence every open non-empty subset of X has such a component
and we can define by induction a sequence

XoW,oK,>intK,>clW,> Wy> K, > intK, > ...,

where W, is an arbitrary open non-dense subset of X, W, is an open set,
and K, is its component with a non-empty interior.

Let Fo = ({K,: ® < w}. The set F, is a continuum, F, # X. The
set X —F, cannot be connected. If it were, then, by Lemma 6, the conti-
nuum X /F, would be homeomorphic to X, and X /F, would be locally con-
nected at the point [#,], which contradicts the conclusion of Corollary 3.

The choice of a non-dense open set W, was arbitrary, 8o in every open
subset of X we can find a continuum F such that X —F is disconnected.

Let X —F, = U,uV, be a separation. Let F; < ¥V, be a continuum
such that X —F, is disconnected. Choose a separation X —F, = U,VV,
such that U,UF, < U,. By induction we can find a sequence of disjoint
continua F,, F,,... such that X —F, is disconnected, and a sequence
of separations X —F, = U,UV, such that U,VF,< U,,,. Let F =
N{V,UF,: n< o}. The set F is a continuum. For ¥, < U,,, we have
F,NnF =@ and F = ({V,: n< w}. Thus the set X —F is connected.
The argumentation similar to the previous one leads to a contradiction.

LeEMMA 9. The continuum X 48 indecomposable.

Proof. Let K < X be a continuum, @ # K # X. Let p e X —K.
Choose open sets U and V such that K < U, peV, and UnV =@. By
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Lemma 5 the set U is disconnected. The continuum K is contained in the
component of U, so0, by Lemma 8, it has an empty interior.

The lemmas give the announced theorem.

THEOREM. If a Hausdorff continuum has only three topologically dis-
tinct non-empty open subsets, then it is non-metrizable, perfectly normal,
indecomposable, and homogeneous.

The answer in the affirmative to the following problem would imply
that Hausdorff continua having three types of open subsets did not exist.

ProBLEM (P 1235). Let X be a Hausdorff continuum having the
Souslin property or, in particular, being perfectly normal. Let K be a con-
tinuum of convergence of X. Is it true that all save a countable number
of points of K are non-local separating points of X ¢
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