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0. Introduction. For a structure U for a first order language ¥’ and
a Boolean algebra B, A[B]* denotes the bounded Boolean power of A with
respect to B. We can describe A[B]* as follows: S(B) is the Stone space of
B. The universe of U[B]* consists of all continuous functions from S(B) into
A (where A has the discrete topology). A[B]* becomes an .¥-structure by
defining the operations and relations pointwise. For an n-ary relation R, this
means R(f}, ..., f,) if and only if R*(f;(x), ..., f,(x)) for all xeS(B).

This version of bounded Boolean powers is equivalent to that given in
[2] whose notation we have adopted. We refer the reader to [2] as a general
reference on Boolean powers, and to [3] as an all-purpose source on model
theory.

Definition (Burris [2]). W is B-separating if A[By]* = WU[B,]* implies
B, = B,.

Definition. W is weakly separating if W[By]* = A[B,]* implies
B, = B,.

Briefly, the following is known: A Boolean algebra B is weakly separat-
ing iff the Tarski-Ershov invariant of B is {m, n), where m is even and
0 < n < oo (see [7])); a finite distributive lattice is weakly separating [ 6]; bounded
chains are both B-separating and weakly separating (see [1] and [9]). These
results rely on the isomorphism between bounded Boolean powers of bounded
distributive lattices and free products described in [8] and [9].

In addition, Jonsson [5] has shown that a centerless indecomposable
group is B-separating. Recent results of John Lawrence (a letter from
S. Burris) show that no abelian group is B-separating or weakly separating.

In Section 1 we show that every chain with more than one element is
both B-separating and weakly separating thereby generalizing the results of
Balbes and Dwinger [1] and Speed [9]. In Section 2 we describe an 2 which
is B-separating but not weakly separating. This provides a negative answer
to a question of Burris in [2].
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1. Chains. We identify a Boolean algebra B with the algebra of clopen
subsets of its Stone space S(B). For ae B, B|, denotes the restriction of B to
a; i.e,, B|, consists of all elements of B which are less than or equal to a with
the induced operations. It i1s well known and easy to prove that B, is
a direct factor of B. In fact, if a’ is the complement of a, then B|, x B|,, = B.

For L a bounded distributive lattice, C (L) denotes the Boolean algebra
of complemented elements of L. If L is any distributive lattice and x, yeL,
x <y, x#y,then L[x, y] is the bounded distributive lattice of all ze L with
x <z <y and with the induced operations.

It is easy to see that if =4, A, v) is a (bounded, distributive,
Boolean) lattice, then so is A[B]*.

LEMMA 1. Ler A = (A, A, v ) be a chain, B a Boolean algebra, f, ge L
=U[B]* f#g and f <g. Let

D = {xeS(B)| f(x) # g(x)}.
Then C(L[f, g]) = B|p.

Proof. The following preliminary observation is useful: if
he C(L[f, g)), then for every xeS(B) either h(x) =f(x) or h(x) = g(x). This
is true because if f(x) < h(x) < g(x) and K’ is any element of L[ f, g], then
one cannot simultaneously have h(x) A h'(x) =f(x) and h(x) v k' (x) = g(x)
since A is a chain. So h would not be complemented in L[ f, g], contrary to
our assumption.

Now, let he C(L[f, g]). Let D, = {xeS(B)| h(x) #f(x)}. It follows im-
mediately from the preceding remarks that the map h— D, of C(L[f, g))
into B|, is 1-1. Given any element U of B|p, i.e., a clopen subset of D, define
hy by

g(x), xeU,
() = {f(x), x¢U.

Then hyeC(LLf, g]) and D, = U. Thus the map h — D, is onto. It is easy
to see it is also a Boolean algebra isomorphism.
THEOREM 1. Every chain with more than one element is B-separating.

Proof. Let A = (4, A, v) be a chain with at least two elements. Let
B,, B, be Boolean algebras and let ¢ be an isomorphism of Ly, = U[By]*
onto L, = A[B,]*. Choose a < b in A and define f(x) = a and g(x) =b for
all xeS(B,). Now, find f; and g, in A[B,]* such that f; < ¢(f) < ¢(9) < ¢,
and f, (x) # g, (x) for all xeS(B,).

By Lemma 1, C(L,[f,, g:]) = Bylss,) = By. Also we have

e ()< f<g<o )
Thus ¢~ (f;) (x) # ¢~ '(g,) (x) for all xeS(B,). Consequently, by Lemma 1,
C(LoLe™ ' (/). @™ *(g1)]) = Bo.
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Clearly, ¢ maps C(Lo[¢™ " (), ¢~ ' (9,)]) isomorphically onto C (L, [ £, 9,]),
so B, = B,.

The proof that nontrivial chains are weakly separating is somewhat
different. It is convenient to use an interesting but not very well known result of
Galvin about factor sentences. A sentence ¥ (in the appropriate first order
language) is a factor sentence if for all structures A, A, the relation
U, x A, = Y implies W, = ¢ and A, = . Galvin [4] proved that if for every
factor sentence ¥ we have Uy, ¢ if and only if A, =y, then U, = A,.

THEOREM 2. Every chain with more than one element is weakly separating.

Proof. Let A = (A, A, v) be a nontrivial chain and let By, B, be
Boolean algebras with A[B,]* = A[B,]*. Let y be a factor sentence in the
language of Boolean algebras and suppose Byl= ¥. Suppose, in order to
reach a contradiction, that B, = 71y. Choose f, ge U[B,]* such that f <g
and f(x) #¢g(x) for all xeS(B,). Then for L, =U[B,]* we have
C(L, [f, 9] = B, and, consequently,

A[B J*E“Jvaw[v<warv#wAaC(L [v, wDE Y]

The formula in quotation marks is expressible in the first order theory of
lattices; since U[By]* = U[B,]* there are f,, go€ Lo = W[By]* such that
Jo < go, fo # go, and C(Lo [ fo, gol)= 1. But, by Lemma 1, C(Lo [ fo, go))
is a factor of B,. Since Yy is a factor sentence and ByE Y, we have
C(Lo[fo, 90)) E ¥. This contradiction shows that every factor sentence true
in B, is true in B,. Reversing the roles of B, and B,, we infer that every
factor sentence true in B, is true in B,. Consequently, by Galvin’s theorem,
B, = B,.

Remarks. The proof of the preceding theorem could be carried out by
examining the Tarski—Ershov invariants of B, and B,, but the use of factor
sentences seems to simplify the argument. Theorems 1 and 2 hold if the chain
A has an additional structure. In particular, if U is an ordered group, then
A[B]* is a lattice ordered group. And if A[B,]* = A[B,]* (in the language
of lattices), then B, = B,. This answers a question of A. M. W. Glass.

2. An example. In [2] Burris asked the following question: If U is
B-separating and W [By]* = A[B,]*, does it follow that B, = B, ? (Le., is A
weakly separating?)

Let # be the language { A, Vv, ', 0, I} for Boolean algebras with count-
ably many unary predicates {U,|new} added. We show there is a countable
&L-structure A =B, U,, 0, 1),,, such that

(1) B and all the U,’s are atomless Boolean algebras. The U,’s form
a descending chain of subalgebras of B and

N U,= {0’ 1}

new

2 Ax A=A

2 — Colloquium Mathematicum XLVIII.2
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Remarks. The properties in (1) can be expressed by a single sentence
of 4w

A provides a negative answer to Burris’s question.

THeEOREM 3. If W satisfies (1) and (2), then W is B-separating but not
weakly separating.

Proof. By (1), {feU[Bo]*| A[B,J*k= U,[f] for all n} equals

{f e U[Bo]*|range f < {0, 1}},

which is isomorphic to B,. Thus U[By]* =~ A[B,]* implies B, =~ B,. And A
is B-separating. From (2) it follows that  fails to weakly separate even finite
Boolean algebras:

W[22"]* = Ax ... xU(2n times) = A x ... x U (n times) = A[2"]*
while 22" # 2",

The existence of UA. For I<m<w let A, be the L-structure
{Bm, Un, 0, 1>,.,, where B,, is an atomless Boolean algebra of cardinality
w,, Which is w,-saturated. In addition, for n <m, U} is an w,,_,--saturated
atomless Boolean subalgebra of B, of cardinality w,-,-;; for n=>m,
Uy = {0, 1}. For all n, we have Uy 2 Uy, ,. To prove the existence. of such
Boolean algebras with prescribed cardinality and degree of saturation we use
the GCH.

Let &, be £ {U,,..., U,_,}. We have

A | Lo x N, | L, =(B,xB,, UtxUD, ..., U"_, xU"_,>.

Each of these direct products is an atomless Boolean algebra of the same
cardinality and degree of saturation as B,,, Ug, ..., Un_,, respectively. Since
any two countable atomless Boolean algebras are isomorphic, we have
Um-yxUm_y =Un_,. Using the w,-saturation of U,_,xUn_., and
m-2, we extend the above isomorphism to get Up_,xUn_, = Un_,.
Saturation allows us to continue to extend isomorphisms until we have
(3) Up ! L X Uy} Ly = U, 1 2,
LEMMA 2. Let ¢(v)e L, and k> m. If

U E=Jv[ew) A Tv=0A v =1],

then W, =3Iv[eo(v) A U, (V)]

Proof. Let be,, b#0,1, with W= @[b]. Assume beU%. Let
ceUk_,, c¢Uk. Such a c exists by cardinality considerations. Now, b, ¢ are
both different from 0, 1 and are elements of the saturated atomless Boolean
algebra UX_,. The mapping which sends b to ¢ can be extended to an
automorphism of U% _,. And this again can be extended by the repeated use
of saturation to an automorphism of U, [ Z,,. Thus

U= olc] A AUnLe]
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Now, let  be a nonprincipal ultrafilter on w—{0}. Let %' be the
ultraproduct [[ U,/#%. From (3) it follows easily that A x A =~ A’. The

m=1

ultraproduct ' is far from countable but our goals of (1) and (2) are almost
achieved. Of course, we have no knowledge of () U,,.

new

Consider the theory of U'; ie.,
T= {peZ|¢ sentence and W' [= ¢}.
What we want is a countable model U of T which omits the set of formulas
Zw={"v=0, Tv=1, U,(v)| new}.

For such an A we would have A = W, and since = is preserved by direct
products ([3], p. 345), UxA=WU. Moreover, since A omits X (v),
N U,=10, 1}. Then A would satisfy (1) and (2).

We obtain 2 by applying the omitting types theorem ([3], p. 79). We
proceed to show T locally omits X (v). Let ¢ (v) be a formula of ¥ consistent

with T. Then W =3 v(ep). If 1 or O satisfies ¢ in W, we are done. Assume
WEIv[ep)A Tv=0A Jv=1].
Thus
X={k|UEFv[epw)A Tv=0A v =1]e¥]}.
By Lemma 2 there is an m such that, for all but a finite number of k in X,
ke X implies
A =3v[o@) A U, ()]

Since % is nonprincipal,

WEIv[e®) A U, @0)].

Hence ¢(v) A 1 U,(v) is consistent with T and T locally omits X(v). The
existence of A now follows from the omitting types theorem.

Remarks. At one point we used the GCH. All required properties of
A- are absolute for standard models of set theory. U certainly exists in the
constructible universe, and thus it exists by absoluteness. The dependence on
the GCH can thereby be eliminated.
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