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MODULE OVER A DEDEKIND RING

BY

G. ARCHINARD (GENEVA)

1. Introduction. Let A be a Dedekind ring, K its quotient field, M
a torsion-free and finitely generated A-module, and let KM denote the tensor
product K ® , M, which is a vector space of finite dimension over K.

Definition 1. The rank of M is the dimension of KM.

Let m be the rank of M and let (¢;);-, . n be a basis of KM; we
consider the sets

I; ={xeK|u+xa;eM for some peKo,+ ... +Ka;_,}.

Clearly, these sets depend on the order of the basis elements «; and are
non-zero fractional ideals of A (cf. [3]).

Definition 2. The sets I; (i = 1, ..., m) are the ideals associated with M
for the basis (a;).

In the same manner we define the ideals J; (i = 1, ..., m) associated with
a submodule N of M for the basis (o;) of M. Each such J; is an ideal
contained in I; and we have J; # (0) for i =1, ..., m if and only if the ranks
of N and M are equal

In Section 2, we prove a theorem of Artin’s and recall some other results
obtained by Artin in [1]. Our proof is much more detailed than that given in
[1] because we need the details for later applications.

In Sections 3 and 4, we use associated ideals to express the index of
a submodule and to give an upper bound on the number of submodules of
a given index.

In Section 5, we first establish a connexion between the associated ideals
and the discriminant of a module. It seems to us that this result (Lemma 5)
and those of Sections 3 and 4 are new. Then, in Theorems 4 and 5 and in
Corollaries 3 and 4, for the modules considered in this section we obtain
some results which are well known if these modules are rings of algebraic
integers. Our proofs use only elementary calculation with ideals in a Dede-
kind ring, whereas the proofs for rings of algebraic integers are usually
obtained by localization arguments.



194 G. ARCHINARD

2. A theorem of Artin’s.

THEOREM 1 (cf. [1]). Let M be a torsion-free and finitely generated module
over a Dedekind ring A of rank m and let I; be the ideals associated with M for
a basis (B;) of KM over K, where K is the quotient field of A. Then there exists
a basis (a;) of KM over K such that M =1,a,+ ... +1,0,.

Proof. By definition, M NKB, =1, B,, and if m =1, this establishes
the theorem with a; = f,.

For the case m > 2, we use induction: we let «; = f; and we assume the
existence of numbers o;e KM, j=1,...,i—1 (2 <i< m), linearly indepen-
dent over K and such that conditions

(1) M(‘\(Ka1+ cen +Ka"_1)=11a1+ e +I,-_1a,-_1,
(2) Kal"" e +ch,--1 =Kﬁl+ e +Kﬂl'—l

are satisfied. Then we construct a number a;€ KM such that (1) and (2) are
satisfied when i—1 is replaced by i.

For this purpose we consider a,, ..., a,€1; and b,, ..., b,eI] ! such that
ab;+ ... +a,b,=1. For every =1, 2, ..., r, there is some y,e KB, + ...
... +KpB;_, such that y,+a,p,e M. We take

o = Z b (i +a By).
1=1

First, we prove that I;a; « M. Indeed, for xeI; we have xb,e A since
biel;', and xb,(u,+a,f;)eM since u+a;f;e M. This proves the above
inclusion.

Now, (1) is assumed to be true by hypothesis. We have then

Moliay+ ... +L;_ 0,

and, by the preceding result,
Molio,+ ... +1;0.
This implies
Mn(Ka;+ ... +Kay) o I,a;+ ... +Fa;.
To prove the converse inclusion, let us consider

veMn(Ka;+ ... +Kay).
We have then v = u+ xa;e M, where ueKa;+ ... +Kao;_, and xeK. By
construction,

xa; =x Yy bywy+x Y bap=p+xp,
I=1 =1

where p'eKf,+ ... +KB;—;.
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Because of condition (2), which is assumed to be true by hypothesis, we
have also pueKp;+ ... +KB;_,, and then

v=yu"+xp;, where p'=p+pyeKp+ ... +KB;_,.

By the definition of I;, xel;. Then xa; e M, as we established above. Hence
the condition v = p+ xa;e M implies ue M and we have ue M N (Ka; + ...
... +Ka;_,). From (1) we obtain puel,a;+ ... +I,_,a;_, and, finally, we
have vel,a;+ ... +1;a;, which establishes the inclusion

Mn(Ka;+ ... +Kay)< 1o, + ... +1;q.

Thus, condition (1) is satisfied for i.

Obviously, condition (2) is also satisfied for i. By induction, these
conditions are satisfied for m and, consequently, the equality M =1, a,+ ...
... +1,a, holds.

Remark. Artin [1] considers a Dedekind ring A, its quotient field K,
a vector space V of finite dimension over K, and establishes the theorem for
an A-submodule M of V such that aM < Aw, + ... + Aw,, for some ac 4
and some basis (w;);=;,...m Of V. (The existence of some a for which this
inclusion is satisfied does not depend on the choice of the basis (w;).)
Obviously, such a submodule is a torsion-free and finitely generated
A-module. Our proof of Theorem 1 is more detailed but essentially the
same as that given by Artin and, in fact, Theorem 1 can be used to prove, in
turn, that a torsion-free and finitely generated A-module M satisfies the
above-described property for the vector space KM. Indeed, M is an
A-submodule of KM and from the formula M=1I,0,+ ... +1,a,,
established in Theorem 1, we deduce easily that aM < Aa, + ... + A4,,a,, for
some a€A.

We give now, without proof, some results which Artin established in
[1] and which we will use in Section 5. (The proofs are based on elementary
properties of the ideals in a Dedekind ring.)

ProPERTY 1. The basis (a;) in Theorem 1 can be chosen in such a manner
that m—1 of the ideals I, are arbitrarily prescribed.

ProPERTY 2. If I; and I} are the ideals associated with M for the respective
bases («;) and (), then

i=1 i=1
with some deK.
That means that the class of the product of the associated ideals is

independent of the chosen basis: this is the Steinitz class of M.
From these two properties, one deduces easily the following
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PROPERTY 3. A torsion-free and finitely generated module over a Dedekind
ring is free if and only if its Steinitz class is the class of principal ideals.

3. Application of Artin’s theorem to the case of a submodule.

CoROLLARY 1. Let M be a torsion-free and finitely generated A-module of
rank m, N a submodule of M, and I; (respectively, J;) the ideals associated with
M (respectively, N) for a basis (f;) of KM over K. Then the following index
formula holds:

M:N) =3 (1 J).

Proof. Theorem 1 furnishes a basis (a;) of KM over K such that
M=Ia,+ ... +1,a, and it is easily seen that the ideals I; and J; are
associated with M and N for this new basis.

Now, let xgl") be a representative system of the classes of I; modulo
J;, i=1,...,m. Then a simple calculation will show that every class
of M modulo N has one and only one representative of the form

x(l")a1+ +xf,',"') ®,,. This establishes the announced formula.

THEOREM 2. Let M be a torsion-free and finitely generated A-module of
rank m, (¢;);=y,. . m @ basis of KM, and I, (i =1, ..., m) ideals of A such that
M=ILa+ ... +1,a,.

Then if N is a submodule of M, of rank m, whose associated ideals for (a;)
are J;, i =1, ..., m, then there is a basis (f;) of KM for which N =J, B, + ...
... +JuBm and which is obtained from (a;) through a matrix C =(cy)
((B;) = C(;)) satisfying the conditions

_ 0 fori<k,
Cin = 1  for i=k,

(As mentioned in the Introduction, the obvious conditions J; < I; (i=1, ..., m)
are also satisfied.) '

Conversely, if J; are non-zero ideals of A such that J,c I, (i=1, ..., m)
and if (B;) = C(;) for a matrix C satisfying (3), then J,o,+ ... +J 0, is
a submodule of M whose associated ideals for («;) are J;.

Proof. From the proof of Theorem 1 we deduce that N =J,8,+ ...

cuedi I, for i>k.

)

e +Jmﬂm for some Bl =0y and ﬁl' = Z b,ﬂ,+a,- (i = 2, ceey m) With b‘EJ.'-l
' =1

and yeKa;+ ... +Ka;_, such that y,+a,0;€ N for some a;eJ;. We have

then
W=Xpdy+ ... +x;,-,0,_,€M, where x,€l,.

Hence we can write

m
B: = Z Cik %>
k=1
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r

where ¢, = ) bxpeJ;'I, for i <k, ¢; =1, and ¢, =0 for i > k. This
=1

proves the direct asSertion. The converse is immediate.

Remark. The assertion of Theorem 2 is somewhat similar to that of the
invariant factors theorem ([2], Section 22). However, Theorem 2 gives an
expression for the module M which is independent of the choice of the
submodule N and, therefore, it can be used for the study of all the
submodules of M, while, in the invariant factors theorem, the expression for
M depends on the chosen submodule.

4. Submodules with the same associated ideals for a given basis. Let
M be of rank m, (a;) a basis of KM over K, I; ideals of A such' that M
=lLo+ ... +1,a,, and J; ideals such that J;<I;. Let C =(c;) and
C’' =(c;;) be two matrices satisfying conditions (3) relatively to the ideals I;
and J; and let (B;) = C(x;) and (B;) = C' ().

We first establish some technical results which enable us to give
a sufficient condition for the submodules J, 8, + ... +J,. B, and J, 1 + ...
. +J,Bn to be equal

Then we give an upper bound for the number of submodules of M
which have the ideals J; as associated ideals for (a;).

Lastly, we assume that the number of ideals with a given finite index in
A is finite and, under this obviously necessary condition, we prove that the
number of submodules of a given finite index is also finite.

LEMMA 1. Let B =(by), i, k =1, ..., m, be a matrix with components in K
such that b; =1 and b, =0 for i > k. Let x; be the coordinates of a vector
xeK™, y; those of y = Bx, and let I, #(0), i =1, ..., m, be ideals of A. Then
the following three properties are equivalent:

4) xel,fori=1,....m=yel, fori=1,..., m,
(5 yielb fori=1,...,m=x;el; fori=1,...,m,
(6) byel,I;', 1<i<k<m.

Proof. We use the equality y = Bx in the form
y.-=x'-+bi.,-+1x,-+l+ e +b,-,,,x,,,, i=1,..., m.

To prove (6)=(5) we consider y;el;,, i=1,..., m. Then, of course,
X = Ym € I,,. As the induction hypothesis we suppose x, €I, fork =i+1, ..., m
(1 <i < m). Then, from (6) we have b, x,€I;, and hence

X =Yi—bii+1 %41~ ... —bimxXmel;.

Therefore (5) is satisfied.
Using similar arguments, one proves easily also (5)=>(6) and (4) <>(6).
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LEMMA 2. Let C=(cy) and C' =(cj) be (mxm)-matrices such that
ch=cyu=0for i<k and c;=c;=1 and let (dy)=C C~'. Then d;, =0
for i<k, dy =1 for i =k, and

dl'k = z (cl’J—ClJ)AJk for i> k,
j=k

where A, =1 and, for j > k,

Cvru 1 0 ... 0 0
Ck+2,k Ck+2k+1 1 .. 0 0

(7) Ay = ) L IR IR .
Cj—2,k Cj—24+1 Cjozh+2 - 1 0
Cj-1k Cj-1k+1 Cji—1k+2 -+ Cj-1,j—2 1
Cik  Cik+1  Cik+2 -+ Cjj-2  Cjj-1

Proof. This is a manner of writing C'C~!, when C and C’ satisfy the
above hypothesis.

LEMMA 3. Let I; and J; be non-zero ideals of A with I, o J;,i=1, ..., m,
let c,eJ7 1, for i>k, and let H;=J,I7'. Then

AjkEJj-l j—_ll e Hk—+ll Ih for j>k,
where Ay are the numbers defined in Lemma 2.

Proof. The expansion of the determinant given in formula (7) yields
j-1

(8) Ajk = - Z leAlk fOl‘ ] > k.
I=k

Then we fix k (1 < k < m—1) and proceed by induction on j from k+1 to m.
FOI‘ j = k+1 we have Ak+l.k = _ck+l EJk—+1‘ Ik'

We now assume AyzeJ; 'H Y ... H '\ I, for I=k+1,...,j—1. Then
ciAped; T H Y L HM L.

From the inclusion I; o J; we infer that H; is an integral ideal, and hence
cpAned; ' HZY . HM L.

The proof is completed by using formula (8).

LEMMA 4. Let M be a torsion-free and finitely generated A-module of rank
m, («;) be a basis of KM over K, I; be ideals of A such that J; c I, and let
C =(cy) and C' = (c;,) be (m x m)-matrices satisfying

(31) Cik -——C;k =0f0r l<k, Cii =C,{‘= 1, Ciks C;kEJi—llk for i>k.
Moreover, let (B;) = C(a;) and (B;) = C'(a;). Then, if the condition
(9) C.’j— ijEJi—lHjHj_l "'HZHI for i>j
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(where H, = J, I ") is satisfied, then the submodules
N=J,Bi+ ... +J, B, and N =J B+ ... +J.B,

are equal.
Proof. For Xe KM we can write

X=’_xlB1+ cee +xmﬂm=x’lﬁll+ M +x:’lﬂ:’l’

and from (B)) = C'C~!(B;) we obtain (x;) = (C'C~1)(x]).
Let (C'C™') = (b,); by Lemma 2, we have b, =0 for i > k, b; = 1, and
k—1
bl'k = Z (C;‘j—c,‘j)Aﬁ for i <k.
j=i
By Lemma 1, the equivalence Xe N <> XeN' is valid if and only if
k-1
Y (aj—a)AieliJyt for 1<i<k<m.
j=i
This condition is satisfied if (9) is verified. Indeed, we have then, according to
Lemma 3,

(cij_ckj)AjiEJk_leHj—l HzHlJ:-lHj—_.ll cee Hi_.,.ll Ii CJ,‘_IJ,'.

J

THEOREM 3. Let M be a torsion-free and finitely generated A-module of
rank m and let I; be the ideals associated with M for a basis (a;) of KM over
K. Then, if J; are non-zero ideals of A with J; < I, then the number of
submodules of M having J; as associated ideals for (o;) is at most

ﬁ (A: J._ Ii-l)(m-.i)(m-.i+ l)/2.
i=1

Proof. As a consequence of Theorem 1 we may assume that
M=Ila1+ s +I,,,a,,,.

Then, by Theorem 2, there is a mapping from the set of matrices (c;)
satisfying (3) onto the set of submodules of M which have J; as associated
ideals for (o;). From Lemma 4 we know that the matrices (c;) and (cj})
furnish the same submodule if ¢;, and c;, are connected by condition (9).
Then the number of submodules which have J; as associated ideals for («;) is
at most equal to the number of classes formed by the matrices whose
coefficients are connected by (9). The number of these classes is

l—[ (Ji-llj:Ji-leHj_l;...H1)= H (A:HjHj—l"’Hl)
1sj<ism 1€j<i<m

m—1 m-1
=T] A:H;...H)" ¥ = [] (4: H)m - dm-i+1i2
j=1

j=1
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CoOROLLARY 2. Let A be a Dedekind ring in which the number of ideals of
a given finite index is finite, whatever this finite index may be, and let M be
a torsion-free and finitely generated module over A. Then the number of
submodules of M having a given finite index is finite.

Proof. Let m be the rank of M, let (a;);,=;,... be a basis of KM over K,
and let I; be the ideals associated with M for (a;). We consider separately two
cases for the proof:

(a) Some submodule of finite index of M, say N, has rank less than m.

Let J;,, i=1,..., m, be the ideals associated with N for (x;). Then J,
= (0) for some i. The formula of Corollary 1 shows that I, is finite, and hence
A is finite because of its integrality, and M is also finite because of its finite
generation. Thus M contains only finitely many submodules.

(b) Every submodule of finite index in M has rank m.

Then, as a consequence of the hypothesis on A, there are finitely many
sequences of ideals J,, J,, ..., J, satisfying

IT1d:J)=k.
i=1

This means that the number of sequences of ideals associated with the
submodules of a given index k is finite. Furthermore, by the hypothesis on
the rank of the submodules, the ideals J;, i =1, ..., m, are all non-zero, and
the hypotheses of Theorem 3 are satisfied for each of these sequences of
ideals. Therefore, there are finitely many submodules corresponding to each
of them. This proves the theorem in case (b).

5. Associated ideals and the discriminant. In this section we consider an

integral commutative ring M which has, as in the preceding sections,
a structure of torsion-free and finitely generated A-module and we suppose,
moreover, that the internal and external products are connected by the
relation pu(ay’) = a(uy') for all aeA and u, y'eM.
) Let K be the quotient field of 4. Then KM is a K-algebra and to
each xe KM there corresponds an endomorphism m, of KM, defined by
m.(u) = xu, whose trace will be denoted by Tr (x). It is easily proved, e.g., by
means of Theorem 1 that Tr (x)eA if xe M.

Now, let m be the rank of M and let (x;);=,,. . be elements of KM.
Then the discriminant D(x,, ..., x,,) is defined as

D(x,, ..., x,) = det (Tr (x; x;)).

For a submodule N of M, the discriminant D(N) is the ideal generated
by the discriminants of all the sequences (x;),-; . _m, Where x;eN.

If (y;) = B(x;) for a matrix B whose coefficients lie in K, it is obvious
that D(y,, ..., ym) = (det B> D(x,, ..., x,). This formula proves that the
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discriminants of the bases of KM over K are either all zero or all non-zero.
In the first case D(M) = (0), and in the second case D (M) # (0). In particular,
D(M) # (0) if K is finite or of finite characteristic (cf. [8], Section 2.7).

The following result gives a useful relation between the discriminant of
a module and its associated ideals:

LEMMA 5. Let M be an integral commutative ring satisfying the hypotheses
given at the beginning of the section, let (¢;);= ..m be a basis of KM over K,
and 1, ..., 1, the ideals associated with M for this basis. Then

DM)=(I, ... L)’D(ay, ..., ay).

Proof. By Theorem 1 we have M=1I,8,+ ... +1,B, for some
B, =a, and B; = a;+v;, where v;eKa; + ... +Ko;_,, i=2,..., m. Then

DBy, ---> Bm) =D(ay, .., otp)-

Now, consider x;eM for i =1, ..., m. Then

Xi = Z a;; B;,

j=1

where a;;el; for i, j=1,..., m, and hence
D(xy, ..., %m) = (det (a,))* D(By, ..., Bu)-

It is easily seen that the ideal generated by all the elements det (g;)),
where a;;€l;, is the ideal I, ... I,. And, according to the multiplicative
theory of ideals in a Dedekind ring, the ideal generated by all the elements
(det (a,-j))2 is (I, ... I,)% This establishes the required formula.

- As a first application of this formula, we obtain

THEOREM 4 (Artin’s criterion [1]). Let M be an integral commutative ring,
with a structure of torsion-free and finitely generated A-module, such that
u(ay) = a(uy) for all ac A and y, 4 € M and such that D(M) is not zero. Let
(a)i=1....m be some basis of KM over K. Then M is free over A if and only if

the ideal
(5200 )"
D(ay, ..., )

is ;;rincipal.

Proof. Let I, (i=1,..., m) be the ideals associated with M for (,).
Then

D(M) )1/2
D(al, ceey a,,,)

by Lemma 5. Property 3 completes the proof.

1112...1,,,=(

4 - Colloquium Mathematicum XLVIIL.2
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Remark. In [1], Artin gives a proof of this criterion for the ideals of
the ring of integers of an algebraic field extension and uses localization
arguments. Here we use only elementary arguments from the theory of ideals
in a Dedekind ring.

THEOREM 5. Let M be a ring satisfying the hypotheses of Theorem 4 and
let N be a submodule of M of the same rank. Then

D(N) \/?
N)=|A:| —— .
o =(4:(555) )
Proof. Let (¢;);-,.... . be a basis of KM over K and let I, and J; be the

ideals associated with M and N for this basis.
Applying Lemma 5 to M and N, we obtain

Jy . d,

2
S Im) D(M).

(10) D(N) =<

On the other hand, we have

i=1
Then the formula of Corollary 1 completes the proof.

Remark. Formula (10) can be viewed as a generalization of the familiar
formula AL,K(I)=(NL,K(I))2AL,K valid for a fractional ideal I in a finite
extension L of an algebraic field K (see [4]; [5], Chapter III, Section 3: [6];
and [7], Proposition 2.6 and historic notes).

CoroLLARY 3. Let M be a ring satisfying the hypotheses of Theorem 4
and let (¢);=,.. .. be a basis of KM over K with a;e M and such that
(D(ay, ---» %) = D(M). Then M is free over A with basis (x;).

Proof. Let us consider the submodule N = Ax;+ ... +Ax, of
M. From Lemma 5 we deduce that D(N)=(D(«y, ..., ®,)), and hence
D(N) = D(M). The formula of Theorem 5 is reduced to (M: N) =1, and
then M = N. This proves the assertion.

COROLLARY 4. Let the Dedekind ring A have no ideal of infinite index and
only finitely many ideals of a given finite index, whatever this index may be,
and let M be a ring satisfying the hypothesis of Theorem 4. Then the number
of submodules of M which have a given non-zero discriminant is finite,
whichever this discriminant may be.

Proof. Submodules having the discriminant D # (0) are of the same
rank as M and Theorem 5 can be applied. They all have the same finite

index (A: (D/D(M))”z) in M and are, by Corollary 2, finite in number.

6. An example. Let A be the ring of integers of an absolute quadratic
extension K and w an algebraic integer of degree 3 over K. We consider
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M=A+Aw+ Aw* Then KM = K(w), M > 4, and M is an integral ring
which is also a torsion-free and finitely generated A-module of rank 3.
Our purpose here is to describe all subrings of M which contain 4 and
are of index |4|, where A4 is the discriminant of K.
These subrings are obviously submodules of M of rank 3 .and for such
a subring, say N, by Theorem 2 we have

N = A+J2(C21 +(D)+J3 (C31 +C32a)+(l)2),

where A, J,, and J; are the ideals associated with N for (1, w, ®?) and
where c;;eJ;7! for i=2,3 and j <i.
According to Lemma 4, we can consider ¢,; =c¢3, =0, and then we
have
N =A+J,w+J5(do+w?, where deJ3!.

Lemma 4 also proves that we do not change this module if we replace d
by some d’'eJ3! such that &' —deJ;'J,. Conversely, it can easily be proved
that if two such modules are equal, then d'—deJ;'J,.

Corollary 1 shows that |[4| = N(J,J;), where N(J;) is the absolute
norm of J;.

Moreover, let x, x’eJ,. Then xw, xX’‘we N, and because N is a ring, we
have xx’w’eN, whence xx'e€J;. This means that J; is a factor of J3.

From these properties we deduce the following result:

Let N be a subring of M = A+ Aw+ Aw?, which contains A and is of
index |A|. Then:

(a) if 4 is odd, then N is one of the following submodules:

A+A /A 0+ A(do+w?), where d=0,1,...,]|4|—1;
(b) if 4 =4m with m odd, then N is one of the following submodules:

A+ A4 o+ A(do+o?),

where d =0, ..., m—1, \/%, 1+\/ﬁ, cens m—l+\/r;, or

A+ 2 /mo+ P(do+o?),

where d =0, 1, ..., m—1 and where P is the ideal of A such that #* =(2);
(¢) if 4 =4m with m = 2q (q odd), then N is one of the submodules given
in (b) or one of the following:

A+ A4 V%w+2A(da)+w2), where d =0, 1, ..., q—1.

It can happen that some of those enumerated submodules are not
subrings.
We prove assertion (c). First observe that |4] = N(6), where 6 =

2(/m) = P2 /m = P> 3, P being the ideal of A such that #* =(2) and 2
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being prime to £ and such that 22 = (g). Then the condition N(J,J,) = |4|
implies that J,J; =& and J;|J3 implies that J, is one of the following
ideals: A, 2 or #2. Finally, d is obtained by taking representatives of the
classes of J3! modulo J3!J,.

In cases (a) and (b), J; and d are obtained in the same way.
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