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1. Introduction. Let 2 denote the full subcategory of the topological
category whose objects are all finite discrete spaces. Then, as is well known,
every totally disconnected compact Hausdorif space can be written as the
limit of an inverse system in 2. In particular, spaces of arbitrarily large
weight are limits of inverse systems in 2. In contrast, consider the category
&, whose objects are all compact, connected n-dimensional Lie groups,
and whose morphisms are all continuous, surjective homomorphisms.
The limit of any inverse system in %, is metrizable [6].

In this paper * it is shown that the second phenomenon is a special
case of 2 general theorem. If .# is any category such that each morphism
is @ monomorphism (%, is such a category), then to each inverse system

X in # there corresponds a reduced inverse system X in « which is isomor-
phic to X. In the presence of mild assumptions about .#, the cardinality

of the index set A of the reduced system X is bounded by a fixed cardinal
number A dependent only on the category .#.

Of special interest is the case where .# is an appropriate subcategory
of a category of pointed connected topological spaces whose morphisms
are base-point preserving covering projections. If .# is such a category,
then A can be expressed in terms of properties of the fundamental groups
of the spaces in .#. For example, in the case of the category #,, a simple
calculation shows that 1 = N;. An immediate consequence is the previously
mentioned result that the limit of any inverse system in .2, is metrizable.

The appropriate setting for this work involving inverse systems is
that of pro-categories. The basic facts about pro-categories which are
used in this paper are contained in Section 2.

We are grateful to Carl Eberhart and John Mack for numerous help-
ful comments and questions concerning this research. In particular, a to-

* During this research the first 'author was visiting the Univerpity of Zagreb
on an exchange program sponsored jointly by the National Academy of Sciences
(U.S.A.) and the Yugoslav Academy of Sciences and Arts.
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pological proof (unpublished) of Corollary 3 due to John Mack provided
the motivation for Theorem 1.

2. Pro-categories. Pro-categories were first introduced in [4], and
a general discussion of such categories is-.contained in [1]. For this paper
the less general definition (see [2]) presented in the sequel will be suffi-
cient.

In this paper a directed set A is a directed quasi-ordered set with a min-
imal element a,. Since every inverse system contains a cofinal subsystem
with a minimal element, there is no loss of generality in this assumption.

For any category ¢ let pro(-¢’) denote the category whose objects are
inverse systems X in ) over arbitrary directed sets, and whose mor-
phisms are equivalence classes of maps f: X —»Y defined as follows. Let

X = {Xo; paw; A} and Y = {Y;; qp; B}

be objects in pro(X). A map f: X—Y (not a morphism) consists of
a function f: B — A (not necessarily order-preserving) and of a collection of
morphisms {fs;: Xy4— Y| fe B} in A such that, for < ' in B, there
exists an ae A4 with f(B8), f(f’) < a and the diagram

y 4 > P >
Xyp< X=Xy
Y« ¥,

commutes in &'. Two such maps f, g: X —Y are equivalent if, for each
B e B, there exists an ae A such that f(f), g(8) < a and the diagram

X,5< X,

Ts} VP
g

Y<Ky

commutes in . The morphisms of pro(X’) are the equivalence classes
[f] of such-maps. The composition of morphisms

f]l: X-Y, [g1:Y—~>2Z ='{Zy; 7,5 C}

is the mol.'phism

[91(f] = [9f],

where [gf] consists of the function fg: ¢ — A and of the morphisms
9y funt Xyon 2y 1 7€ O}

For each cardinal number 4, we define pro(.#"; 1) to be the full sub-
category of pro(.-¢’) having as its objects inverse systems over directed
sets of cardinality A or less.

We shall need the following facts about pro(x’):
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PropPoSITION 1. If X = {X,; Pu.; A} 18 an object in pro(X’), and
B < A is cofinal, then {X;; pgs; B} i8 isomorphic to X in pro(X').

ProOPOSITION 2. If X and Y are isomorphic objects in pro(Xx’), and
X, =invlimX, Y, = invlimY, then X is isomorphic to Y in X .

3. Construction of the reduced system. Throughout this paper .#
will denote a category of monomorphisms, that is, a category such that if
f, g and kb are morphisms and fg = fh, then g = h.

Example 1. Let 8 be a left-cancellative semigroup with identity.
Then 8 can be interpreted as a category .# of monomorphisms whose only
object is an “ideal object” X, and whose morphisms are the elements
of 8. Composition of morphisms is given by multiplication in 8. In par-
ticular, any identity containing subsemigroup of a group is such a category.

In this section we show that each ob]ect X in pro(.#) determines an

essentially unique reduced inverse system X in .# such that X and X are
isomorphic in pro(.#). Given an inverse system X in .#, the construction

of the reduced system X will be accomplished in two steps. Intuitively,
the first step is to “extend” the system X to a system X* by “adding all
possible arrows”. The second step is to define X as a certain cofinal sub-
system of X*.
Let X = {X,; p.; A} denote an object in pro(.#), where A is a di-
rected set with quasi-order < and a minimal element «,.
*

Step 1. We begin by defining a directed set A* with quasi-order <*.
Let A* — A as sets, and define a <* @’ in A* if there exists a morphism
fin 4 such that p, ., = p,.f. By the monomorphlsm property, f is unique
(whenever it exists). Oonsequently, for a <* @’ we can define p, to be
the morphism f. It is easy to verify that X* = {X,; pre; A*} is a well-de-
fined inverse system. Notice that if a < a’, then a <* a’ and p,, = p,.

'We wish to show that X" is isomorphic to X in pro(.#). Let i: X - X*
be the map which consists of the identity function ¢: A* - A4 and the
collection of identity morphisms

{ia: Xi(a) —> Xalaéf A*}.
If a <* o, then choose any o'’ e A such that a, o’ < a’’. The diagram
. g

» »
) 'X‘i(a)(—.Xa”_>Xi(a')
‘la\L .lia'

X <«~—2 X,

commutes and, consequently, [#] is'a morphism in pro(.#). The morphism
[¢] has an inverse which is defined analogously. Thus [{] is the required
isomorphism. This completes Step 1.
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Step 2. Let ~ be the equivalence relation on the index set A* defined
as follows: a ~ a’ if a <* ¢’ and o’ <* a. An equivalence class of the rela-

tion ~ is called a level set of the quasi-order <*. Let A be any subset

of A* which contains exactly one element from each level set. Thus 4 is
a cofinal directed subset of A" which is order-isomorphic to the directed

partlally ordered quotient set A*/~. Now the inverse system X = {X,;
Prs A}, obtained by restricting indices to A, is the desired reduced
system. Proposition 1 implies that X is isomorphic to X*, and hence to X.

We now introduce a definition which plays an important role

throughout the remainder of the paper, and we record a fact about our
construction.

Definition. Morphisms f: X -Z and ¢g: Y —Z of an arbitrary
category are equivalent if there exists an isomorphism h: X — Y such
that f = gh.

ProPosITION 3. Let a, a’ e AT f Paga and Payo GTE equivalent morphisms
in M, then a = a'.

Proof. Let h: X, — X, be an isomorphism 1n -4 such that p,.h
== Pagar- Then p, b~ v —p“, so, by Step 1, a <*a’ and o' <" a. Thus
a ~ a’ and, by Step2 a=a.

Remark. If a ~a’ in A”, then the monomorphism property 1mphes

that ph, is an isomorphism w1th inverse p.,. This justifies our calling X
the reduced system associated with X.

4. The reduction theorem. We now prove our main result, the reduc-
tion theorem, and give an application involving metrization of compact
spaces.

THEOREM 1. Let .# be a category of monomorphisms. Suppose that, for
each object Y in M, the equivalence classes of morphisms in Hom ,(—, Y)
form a set whose cardinality is bounded by a fized cardinal A. If X

i8 an inverse system in #, then the reduced system X is an object of pro(.# ; 2).

Proof. Let X = {X,; p..; 4} be an object of pro(.#), and let X
= {X,; p*v; A} denote the reduced system associated with X. According
to Proposition 3, the cardinality of A is bounded by the cardinality of
the set of equivalence classes of morphisms in Hom ,(—, X, ). Thus A
is of cardinality A or less, and X belongs to pro(.#; A).

CoroLLARY 1. Suppose A is a small category of monomorphisms.
There exists a cardinal A such that X belongs to pro (. # ; 1) for every X in pro ().

Let A4’ denote a subcategory of an arbitrary category . We call
the subcategory "' admissible (with respect to ') if, for each commuta-



INVERSE SYSTEMS OF MONOMORPHISMS 87

tive diagram

D, GEELINN, '
N4
VA

in ", the condition that f and g belong to > implies that ~ also belongs
to 7. Notice that every full subcategory of ¢ is admissible.

COROLLARY 2. Let .#' be an admissible subcategory of a category 4 of
monomorphisms. Suppose that there exists a cardinal A such that, for each
object X in pro (), the reduced system X belongs to pro(.#; 1). Then, for each
X' in pro(A'), the reduced system X' with respect to A’ belongs to pro(.#'; A).

Proof. Let X' be an object in pro(.#’). Since .#' is admissible, it is
trivial to check that the reduced system X’ with respect to .# is the reduced
system with respect to .#. But the latter system belongs to pro(.#; 1),
and hence to pro(.#’'; 2).

COROLLARY 3 (John Mack). Let X be a metric compactum and let F be
a countable left-cancellative semigroup of surjective self-maps on X. If
X = {X,; Pua; A}, where X, = X for each a and p,,. e F, then X =
invlim X is a metric compactum.

Proof. Let .# denote the category whose only object is X and whose
morphisms are the mappings in & together with the identity map. Then .#
is a category of monomorphisms, and the number of equivalence classes
of morphisms in Hom , (X, X) is bounded by N,. Thus, by the reduction
theorem, X is & countable system; and, by Proposition 2, X is homeo-
morphic to the metric compactum invlim X.

The next example shows that Corollary 3 does not hold if % is assumed
to be a countable right-cancellative semigroup of self-maps, even if the
space X is a countable compactum.

Example 2. Let X denote the metric compactum consisting of -the
set of positive integers P and the point at infinity oco. Let &# be the semi-
group of all self-inaps f: X — X with the following properties:

(1) there exist m and » in P such that f([1, m]) = [1, »];

(i) f(m=-7) = n-+r for re P; and

(iii) f(o0) = oo.

Then £ is & countable right-cancellative semigroup, since the map-
pings in & are surjections.

Let D denote any totally disconnected compact Hausdorff space.
It is well known that

D — invlim{D,; p.; A},

where each D, is a finite discrete space and the bonding maps are surjec-
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tions. Each space D, can be interpreted as an initial segment of the space
X; and each mapping p,.: D, — D, can be extended uniquely to a map-
ping pi.: X — X in &# whose restriction to X — D, is an order-preserving
bijection onto X — D,. Consequently,

X ={X,; pre; A} with X, =X

is a well-defined inverse system, and D < X, = invlim X. This proves
that the category ¢ whose only object is X and whose morphisms are the
mappings in & admits no cardinal 4 such that each object in pro(x’) is
isomorphic to an object in pro(x; ).

5. Categories of covering projections. Throughout this section ¥ will
denote the category whose objects are all pointed Hausdorff spaces which
are connected, locally pathwise connected, and semilocally 1-connected,
and whose morphisms are all base point-preserving covering projections.
Since covering projections on objects of ¥ are fibrations with unique
path lifting, composition in € is well defined (see [7], Theorem 6, p. 69,
and Theorem 10, p. 78). According to the unique lifting property of
covering projections on connected spaces ([7], Theorem 2, p. 67), ¥
is a category of monomorphisms. We call € the category of covering pro-
jections.

The next theorem is our main result concerning the reduction of in-
verse systems in subcategories of %.

THEOREM 2. Let €' be an admissible subcategory of the category € of
covering projections. Suppose that, for each object (Y, y,) in €', the number
of distinet conjugacy classes of subgroups of =, (Y, y,) is bounded by a fived
cardinal A. If X is an inverse system in €', then the reduced system X (with
respect to €') belongs to pro(€’; i).

Proof. According to Theorem 1, it suffices to show that, for each
object (Y, y,) of €', the number of equivalence classes of morphisms in
Homg. (—, (Y, y,)) is bounded by A. Suppose that

Jit (Xo 2) — (Y, 9,) (¢t =1,2)

are morphisms in €', and that there exists a homeomorphism h: X, - X,
(not necessarily base-point preserving) such that f, = f,h. Using standard
covering space techniques, it is easy to verify that there exists a base-
-point preserving homeomorphism &': (X,, #,) > (X,, #,) such that f,
= f,h'. Since ¢’ is admissible, 2’ is a morphism in €’. This observation ena-
bles us to apply the classification theory for covering projections (see [7],
Corollary 3, p. 80). We conclude that the collection of equivalence classes
of morphisms in Homg. (—, (¥, Yo)) is a set of cardinality A or less.
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COROLLARY 4. Let €' be a small admissible subcategory of the category
€ of covering projections. There exists a cardinal A such that if X is in pro(¥¢’),
then X is in pro(€’; ).

COROLLARY 5. Let €' be an admissible subcategory of the category €
such that each object of €' is a compact meiric AN R with abelian fundamental

group. If X is an inverse system in €', then the reduced system X isan object
in Ppro(€’; N,). Consequently, the limit of any inverse system in €' is
metrizable.

Proof. If (Y, y,) is an object in ¥¢’, then =,(Y, y,) = H,(Y) and,
consequently, n,(Y,y,) is a finitely generated abelian group (see [5],
Corollary 7.2, p. 141). Thus =n,(Y, y,) has only countably many distinct
subgroups.

6. Categories of n-dimensional Lie groups. Let %, denote the category
of compact, connected n-dimensional Lie groups with continuous sur-
jective homomorphisms. Standard facts about the relationship of Lie
algebras to Lie groups (see, e.g., [3], Theorem 6.6.3, p. 130) imply that
homomorphisms in %, have discrete kernels. Thus %, is a subcategory
of the category ¢ of covering projections. The following lemma shows
that %, is an admissible subcategory of %:

LEMMA 1. Let (Gy,¢;) (i = 0,1,2) be Lie groups in %,. Consider
the commutative diagram

(G4, ) *h'_'*(Gzy €s)
N /
11\ ¥
(Gy, €o)
in the category € of covering projections. If f, and f, are morphisms in &,,
then so i8 h.

Proof. We must show that h is a homomorphism. For each ye¢@,,
define mappings &, and h, from @, into G, as follows:

h,(®) = K(zy) and h,(z) = h(2)h(y), >ed,.

Simple calculations show that h,(e;) = h,(e,) and fyh, = fh,. Con-
sequently, h, and h, coincide by the unique lifting theorem ([7], The-
orem 2, p. 67), and thus h(xy) = h(2)h(y).

THEOREM 3. If X is an inverse system in £,, then the reduced system
X is an object in pro(Z,; N,).

Proof. Let G be any group in %,. Then =, (@) is abelian ([7], Cor-
ollary 10, p. 44). Since G is a manifold, G is a compact metric ANR ([5],
Corollary 8.3, p. 98). According to Lemma 1, %, is an admissible sub-

category of the category ¥ of covering projections. The theorem now
follows from Corollary 5.
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CoROLLARY 6 (Newburgh [6]). If G, = invlim{G,; p..; A}, where
each factor space i3 a compact, connected n-dimensional Lie group and each
bonding map is & continuous surjective homomorphism, then G, is metrizable.
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