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Let C(X) be the Banach space of all real-valued continuous functions on
a compact Hausdorff space X. A linear operator Ton C(X) is called Markov
if Tis positive (f=>0=Tf>0) and T1 =1. We denote by C;(X) the
subspace of all T-invariant functions in C(X), and by P;(X) the subspace of
all T*-invariant probability (Radon) measures on X. By the Markov-
Kakutani fixed point theorem, P;(X) is a non-empty convex and w*
compact subset of C*(X). A measure ue Pr(X) is called ergodic if u is an
extreme point of Pr(X). The set of all ergodic measures is denoted by
ex Py (X).
" A Markov operator T is called strong mean ergodic (s.m.e.) if for every
feC(X) the Cesaro means

Af=n"H(f+Tf+..+T7f)
converge in C(X). Then the strong operator limit P’= lim A, satisfies TP
= PT = P. In [7] Sine proved that T is s.m.e. iff C;(X) separates Pr(X).
In the sequel we shall use the concept of Bauer simplex. Let K be a

compact convex subset of a locally convex topological vector space E. The
set

K=lax: >0, xeK)

is the cone generated by K, so it induces a translation invariant partial
ordering on E:

x>y iff x-yek.

K is~called a simplex if the space K —K is a lattice in the ordering induced
by K.

By the Choquet—-Meyer Theorem (see [3], p. 66) and by Theorem I1.3.6
of [1] we see that the above definition of a simplex is equal to the definition
of a Choquet simplex from [1]. If Tis a Markov operator, then P;(X) is a
simplex (see, e.g., [5]). A set K is called a Bauer simplex if K is a simplex and
the set of all extreme points of K is closed (see [1], p. 103).
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Let A(K) denote the space of all continuous affine functions on K with
the supremum norm. By the Bauer Theorem, K is a Bauer simplex iff 4 (K)
is a lattice in the natural ordering of functions (see [1], Theorem I1.4.1).

1. Invariant functions. Let T be a Markov operator on C(X). Recall that
Tis called uniquely ergodic iff the set Pr(X) consists of exactly one measure.
It is known that T is then s.me. If Pr(X)= {u}, then the associated
projection is of the form

Pf =(u, f)1,

so Cr(X) is a sublattice of C(X). In particular, it follows from Theorem 1 in
[4] that the set of Markov operators T for which C;(X) forms a sublattice of
C(X) is norm residual in the space of all Markov operators on C(X). We
note that, in general, C;(X) need not form a lattice in C(X).

Example. First we consider the Markov operator S on
Y={0u{+3™" n=0,1,2,...}
defined by the formula

S*é =2—15:F3’_"+2—151~3_("_1)

+3~—n

forn=1,2,...,
S*éil =5il’ S*(So =50'

It is not difficult to show that Cg(Y) is equal to the space of all linear
functions on [ —1, 1] restricted to Y. Therefore, Cs(Y) is a lattice but not a
sublattice of C(Y).

Now we modify the example and obtain C;(X) not even being a lattice
in C(X). _

Let X =Y, uY,, where ¥; = Yx {0}, Y, = {0} x Y. On C(X) we define a
Markov operator T as follows:

T*6 =215 +2716

(3710 (F371,0

—_ -1
T* ymm =2 "8 53-n+2710

(3~ (r—1) g

(0,3~ (n—1)
forn=1,2,...,
T*6, =6, for x=(+1,0), (0, +1), (0, 0).

Then f belongs to Cr(X) ill fly, = f; for some f; in Cg(Y), i =1, 2, and
f1(0, 0) = £,(0, 0). It suffices to note that C,(X) is not a lattice in C(X).

In general, it seems to be difficult to check that Cr(X) is a lattice in
C(X), since (in general) it cannot be known what the modulus is. For

example, the condition that for every feCy(X) there exists limA,|f] in
C(X) is sufficient for Cr(X) to be a lattice. Here mod f = lim 4, |f|]. From
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the point of view of the theory of Markov operators it appears to be easier
to investigate when Cr(X) is a sublattice of C(X).

Let M be the closure of the union of the supports of all invariant
probabilities. M will be called the center of T. For example, if M = X or Tis
s.m.e. and the associated projection P is strictly positive (i.e, f=0,
f # 0= Pf # 0), then C;(X) is a sublattice of C(X). This is a consequence of
Proposition 11.5, Chapter III in [6], and Lemma 1.5 in [7]. The Markov
operator Tf(x) = f(x?) on C[0, 1] shows that C;(X) is a sublattice of C(X)
but M # X. To see that the second implication cannot be reversed, we
consider any uniquely ergodic Markov operator T with the invariant proba-
bility u such that the supp u is a proper subset of X. Clearly, Tis s.m.e. and
Cr(X) is a sublattice of C(X). Since Pf =(u,f)1, P is not strictly positive.

Now suppose that Cr(X) is a lattice in C(X) with modulus mod f for f
in Cr(X). By the lattice boundary of C;(X) we shall mean the set

or(X) = N{xeX: mod f(x) =|f (%)},

where () is the intersection over all f from Cr(X). The Example above shows
that 0r(X) need not include the center of the Markov operator. However, we
do not know whether 0y(X) is always non-empty. On the other hand, we
have the following

ProPOSITION. The lattice boundary of the lattice Cr(X) is a closed
invariant set.

Proof. Let feCy(X) and g=|f|—modf Then, clearly, g <0,
ge C(X), and Ty > |Tf|—mod f = g. Therefore, the set {g = 0} is closed and
invariant. By the definition of Jr(X), the assertion follows.

We shall show that in the case of s.m.e. Markov operators T, dr(X) is
equal to the conservative set of T. Since C,(X) is a sublattice of C(X) iff
Or(X) = X, we obtain (for s.m.e. Markov operators) a simple necessary and
sufficient condition for C;(X) to be a sublattice of C(X).

2. Results. The harmonic diffusion discussed in [8] (Example 1) shows
an s.m.e. Markov operator such that C;(X) is not a sublattice of C(X).
Indeed, in that example the space C;(X) consists exactly of the harmonic
functions on the unit disc.

LEmMMA. Let T be a Markov operator on C(X). Then the mapping U: f
—(f,*) is an order preserving isometry of Cr(X) into A(Pr(X)). If, in
addition, T is s.m.e., then U is onto.

Proof. First, we note that U is order preserving. For f; < f, the
inequality Uf; < Uf, follows from the definition of U. Now, let Uf < Uy, i,
(f, W) <(g, ) for every invariant measure u. For arbitrary xe X there exist a
subnet (n') and an invariant measure

Hy = lim AR 5,
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for which (f, u,) < (9, u,). Hence f < g. The mapping U is an isometry since
WUfIl = sup I(f, Wl = sup I(fs )l = Suglf Gl =111

pePr(X)
To see that the mapping is onto whenever T is s.m.e., it suffices, for every
he A(Pr(X)), to define f(x)=h(P*é,), where P denotes the associated
Markov projection. Then we have

(fs ) = [h(P*6,)du(x) = h(f P*5,du(x)) = h(P* p)
for an arbitrary probability measure u on X and
Pf(x) = (f, P*4,) = h(P*J,) = f(x),

so Pf =f, feCr(X), and h = Uf (the above integrals are meant in the sense
of weak integrals of Pettis).

By the fact that C;(X) is a lattice and by the above result we see that
A(Pr(X)) is a lattice. Hence, by the application of the Bauer Theorem we
have (see [1], p. 103)

CoroLLARY 1 (see also [7]). If Tis s.m.e., then P (X) is a Bauer simplex.

The following theorem gives a necessary and sufficient condition for
Cr(X) to be a sublattice in the case of an s.m.e. Markov operator.

THeoOREM 1. Let T be s.m.e. Then Cy(X) is a sublattice of C(X) iff P*6,
is ergodic for every xe X.

Proof. By the preceding remark, C,(X) is a lattice and, by Corollary 1,
P (X) is a Bauer simplex. We take fe Cy(X) and denote the lattice modulus
of fin Cr(X) by mod f.

For the sufficiency we must show that mod f =|f]. Let xe X. Then
mod f e Cr(X), so it is constant on supports of ergodic measures [7] and

mod f (x) = (mod f, P*5,) = U(mod f)(P*d,) = |Uf (P*5,)| = S (x)|

by the isomorphism of Cr(X) with C(ex Pr(X)) (see [1], Theorem 11.4.3).

Conversely, if u = P*¢, is not ergodic for some xe X, then, also by [1],
there exist he A(Pr(X)) and feCy(X) with Uf =h such that |h(u)|
< U(mod f) (). By the definition of measure u we have |f(x)| < mod f(x),
i.e, Cr(X) is not a sublattice of C(X).

Suppose for the moment that Tis an arbitrary Markov operator. As in
[7] we denote by % the partition of X generated by the level sets of Cy(X).
Let & be the collection of those sets of & which support invariant probabil-
ities. The set W = (E: Ee &) is called the conservative set of the Markov
operator T and E€ & are the ergodic sets. Wis always closed (not necessarily
invariant), and if T'is s.m.e., then each ergodic set is invariant and supports
exactly one invariant (ergodic) probability (see [7]). Therefore, for an s.me. T
we have W = {xe X: P*J,cex Pp(X)).
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Remark. From the proof of Theorem 1 we see that if Tis s.m.e., then
for every feCr(X)

mod f(x) =|f(x) iff xeW.

CorOLLARY 2. If T is s.m.e., then 0r(X) = W.

Throughout the rest of the paper suppose that the Markov operator T
has topologically ergodic decomposition (t.e.d.), i.e., each ergodic set is invari-
ant (so W is invariant) and supports exactly one invariant probability (see
[7]). The second condition means that Cr(X) separates the ergodic measures.

THEOREM 2. If T has t.ed. then Cr(X) is a sublattice of C(X) iff the
conservative set of T is equal to the whole space.

Proof. If T has ted. then, by the separation theorem of Iwanik,
Ar(X), the closed subalgebra of C(X) generated by Cr(X), separates Pr(X)
(see [2], Theorem 4). Hence, if C,(X) is a sublattice of C(X), then A;(X)
= Cr(X), so Tis s.m.e. and Theorem 1 yields W = X. The sufficiency is a
consequence of Theorem 1 and the fact that the restricted operator Ty is
s.m.e. on W (see [7]).

Added in proof. In a next paper (to appear in Colloquium Mathemati-
cum) we continue to study the lattice properties of Cr(X). By using different
methods we have proved, in particular, that the lattice boundary dr(X) is
always nonempty.
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