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1. If G is a simply connected nilpotent Lie group it admits discrete co-
compact subgroups I precisely when the Lie algebra g has rational structure
constants. It is well known that the right action R of G on L%(I'\G) decom-
poses into factor representations corresponding to a discrete set (I'\G)" C G
of irreducibles, and that each 7 € (I \ G)" appears with finite multiplicity
m(7). The spectrum (I" \ G)" and the multiplicities were computed explic-
itly in terms of coadjoint orbits in g* using polarizations [10], [17], and later
investigations have shown that these calculations may be performed entirely
in terms of canonical objects associated with orbits [3], [6], [9].

If P, € (I'\G)", are the projections onto the primary components in
L*(I' \ G) we have

(1) f = Z Prf

r€(r\G)A

in the L? sense and it is natural to ask how much smoothness on f is required
to ensure this sum converges uniformly and absolutely. Part of the problem
is that continuity of f does not always imply continuity of Prf (see [18]),
and a number of papers [1], [2], [3], [14] have been concerned with estimates
on the order of P, — that is, on the number of derivatives f must have
for P, f to be continuous. It is known [1] that P, maps C°(I' \ G) into
itself; this also follows immediately once one shows that the C* vectors for
R are precisely C°(I'\ G) (see [4], Appendix 1, or [16]). As for (1), Sobolev
estimates were used in [1] to prove that

(2)  If {Px} are mutually orthogonal projections such that
(i) Px commutes with Ry, Vg € G, k € N,
(i) Yoge; Px = I in the strong operator sense,
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then Pif is continuous and Y ;> Prf = f in the || - ||oo-norm for
any f € CO)(I'\ G)if s > [n/2] + 1.
This is a statement about unconditional convergence since condition (ii)
remains valid under any rearrangement; thus the series must be absolutely
convergent at each point in I' \ G.

We are left with some issues that do not seem to be resolvable using only
Sobolev or other estimates that make no reference to the geometry of the or-
bits for 7 € (I'\ G)*. One would like to know whether 3°, . r\g) | Pr flloo
is finite, and if possible obtain information about the relative size of the
terms. By adapting a result from [11] one can obtain estimates of the fol-
lowing kind: if £ > 0 is sufficiently large then P f is continuous and there
is a C > 0 such that

(3) lIPxfllo < ClixlI™* Vre(FP\G)*, w#1; VfeCW(I\G),
where O, is the Ad* G-orbit associated with = and
|Ir|| = distance from O, to the origin in g*.

We then show how the exponent should be chosen to ensure that Y || Pr f||
is finite. Our final result is:

THEOREM 1.1. Let I be a discrete cocompact subgroup in a simply con-
nected nilpotent Lie group G and let P, be the projection onto the w-primary
subspace of L3(I' \ G). If )

kE>(n+1)+ ([n/2]+1)
then P, f is continuous for every f € C¥)(I'\ G) and

3 IPeflloo < 00

r€(I\G)A
with Z”e( r\G) Pr f = f absolutely and uniformly convergent.

The exponent k can undoubtedly be improved, especially for groups hav-
ing square integrable representations. We would like to thank Len Richard-
son for his comments on [1].

2. Proof of the Theorem. From [4], Chapter 5, and [12], we know
that there are “lattice subgroups” Iy of finite index in I': log I} is a free
Z-module in g with n = dim g generators. Consider the representations

R=ind(I' 1G,1), Ro=ind(Ilp1G,1), p=ind(lp 1 I,1);

then p > 1r (the trivial representation on I') so Ry > ind(I" T G,1) = R,
and we see that (I \ G)* 2 (I'\ G)". For a lattice subgroup there is a very
clean orbital criterion for determining the spectrum:
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(4) T € (Io\G)* & the Ad* G-orbit O, meets (log )%
= {€ € g*: {(logIy) C Z} nontrivially

(see [12], Theorem 1). For I we only have (=).

Fix an inner product in g and take the corresponding inner product in
g* such that the map X — £x with {x(Y) = (Y, X) is an isometry. For
any 7 € G, with orbit O, C g*, define ||r|| = dist(O,,0) using the metric.
If (' \ G)§ is the spectrum with the trivial one-dimensional representation
excluded, then for any exponent & > 0 we have

(5) > et Y

7 €(Io\G)} r€(I'\G)}

In view of the estimates (3) our result follows if the left-hand side of (5)
is finite, and for this we deal only with a lattice subgroup.

The estimate (3) arises from Theorem 4.1 of [11]. If X,,..., X, is any
orthonormal basis for g then L = (-1) Y1, X? is a symmetric element in
the enveloping algebra u(g) and is invariant under any change of orthonor-
mal bases. On C®(I" \ G) the operators R(L)*, k = 1,2,..., are essentially
self-adjoint because C°(I" \ G) is the set HE of C® vectors for R (see [4],
Appendix 1, or [16]). In fact, by [13], Theorem 2.2, for any unitary repre-
sentation m of G, m(L¥) is essentially self-adjoint on the space of Girding
vectors H} = 7(C§°(G))Hx. These, however, are known [7] to coincide
with the C* vectors HZ°. (Alternatively, slight modifications of [13] make
it work for H$° in place of H}.)

For any unitary = we write #(L*) for the unique self-adjoint extension,
the closure of (r(L*), H®) = (x(L)¥, H®). Then one can show that

T(L*) = [®(L)])* = f AFE (d))

where [° AE(d))is the spectral resolution of #(L) (see 8], pp. 1196-1201).
Thus if Ao = min{sp (L)} we have

(6) A = (min{sp #(L)})* = min{sp7(L*)}
= inf{(#(L*)u,u) : ||lu|| = 1, « € Dom(7(L¥))}
= inf{(m(L)*u,u): |lul| = 1, u € H}.

In [11] it is shown that A > ||x||? if 7 is irreducible, and hence

(7) If reG, then M >|x||** VkeN.

Let 7 € G and p = m -7 a primary representation (m < 0o0). Then
p(L¥) is essentially self-adjoint in H,°. Any projection @ that intertwines
the action of p preserves C' vectors, so if we split H, = @, H,, with
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T = p | Hy, = 7 we get Qi(H°) C H. Hence H® = PH, from which
we easily see that if p = m - 7 for some 7 € G we have
@ =neIe): =1, v e HF) = minfsp A4},

A8 2 llpl**  if welet [|p]| = |||}
Now consider a typical r-primary projection Py on L?; on range (Py) =
Hx, R acts like p = m(x) -7 for # € (I'\ G)*. The C*® vectors for
R are C®(I' \ G); since P, intertwines the R-action we get P,(C*°) C
C*. Likewise, we also see that Pr(C*) C H5°. The quadratic form ¢ —
(R(L)*$, ) on C°°(I' \ G) can be written as either

IR(LY 5 or D IR(X)R(LYI (llullo = L*-norm)
i=1

according to whether k = 2 or k = 2¢ + 1, £ € N. Thus if we impose the
Sobolev norm [|#|If = X, <k IR(X*)8l|3 on C(I'\ G) we see that there

is a C' > 0 such that (R(L)*¢,9) < C'||¢||%, V¢ € C*=. Hence

C'liglli > (R(L)*$,4) > (R(L)*Prd, Prd)
= (p(L)*Pr¢, Pxr) (R(L) commutes with Py and I — P;)
> AglIPxoli§ > I|7|**|Pxoll  (by (8)).

The Sobolev space Hx(I'\ G) = {u € L?* : R(X*)u € L? (as a distribu-
tion), V|a| < k} is complete in the || - ||x-norm, and is the || - ||x-norm closure
of C°(I' \ G) as can be seen by adopting the idea behind [19], pp. 58-59.
If ¢, € C*, ||¢r — fllx — O, then ||¢, — f|lo — 0 and ||Pp, — Pf|lo — O, so
(9) IxIP*IPoIIS < C'lillk Vo € Ha .

In particular, this applies to any ¢ € C*)(I' \ G). Finally, notice that if
u € L? and R(X*)u € L? (as a distribution) then we have
P(R(X“)u) = R(X*)Pu as distributions

and in particular R(X*)Pu € L2 [If ¢ € C™® then (PR(X%)u,d)
(R(X*)u, P¢) and Pp € C*, so the latter is equal to (u, R(X*)*P¢) =
(u, PR(X*)*¢) = (R(X*)Pu,8).] For s > 0, f € C**+*) and |a| < s, we
then have R(X)f € C®, P(R(X*)f) = R(X*)Pf € L?, and

IR(X*)Pfllo = ||PR(X*)fllo < C'lix|I"*|IR(X*)flla
(10) <Clnl™ N llkss Vel < s,

IPflls < C'limll=* 11 £+ -

If s = [n/2] + 1, standard Sobolev theory says that f € C(k+2) = P, f
is continuous and || Py fllcc < Cl|Prflls < C'C|Ifllk+sli7|| 7%, Vx € (F'\ G)§,
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where C' > 0 is an absolute constant. Thus we get

Y P flleo < 00

n€(r'\G)*

if we choose the exponent k so that 3, o r\G)2 I7ll=* < oo, and for this it
suffices to consider the lattice subgroup Iy C I" and choose k so that

(11) Y wll™* < 0.

7€(Io\G)g

Let Y7,...,Y, be a strong Malcev basis for g strongly based on Ip.
Then Ad+y(Io) C I for v € I so (logIp)? is Ad*(Ip)-invariant. Let
K = {exp(s1Y1)...exp(snY,) : 0 < s; < 1}; then I'K = G, so if an orbit
O, meets (log )% and £ € O, Ad*(K){ must meet O, N (log IH)%. As
before, 7 € (Ip \ G)* & Or N (logIy)E # 0. For 7 € (Iy \ G)" define
|x| = dlSt(O Ox N (log I5)2). Then |r| > |x||, but on the other hand the
map g* x R" - R",

(£,81,...,82) = Ad*(exp s, Yy ...exp s, Y, )¢

is polynomial in R™ and linear in £ € g*. Take an element £ € O, such that
Il€]l = ||=]|. It is clear that there is a constant C such that || Ad*(z)¢|| < C||¢||
forallz € K, £ € g*; this ensures that |r| < C||7||. We may therefore replace
x| by |x| in (11). Evidently

o omrs Y Ak,

7€(lo\G)g f€(log Io)Z, f#0 -

The latter series converges if k¥ > n + 1. This completes the proof of the
theorem. =

It is clear that we can control convergence of derivatives R(X*)(f) =
Ewe(r\G)A P, (R(X"’)f) for |a] < r if we require that f € C(*+7) where k
is the exponent in Theorem 1.1.

2.1. ExaMmpPLE. If G = R™ and I' = Z" then (I' \ G)" consists of
the characters xx, A € Z", on the torus I' \ G. The quasi-regular repre-
sentation R is multiplicity-free, m(r) = 1 for all =, and the decomposi-
tion f = 3, c(r\g)r Prf is just the Fourier transform 3}, ;. f(/\)x;\ on
L*(I'\ G). Toget 3, cz» |F(A)] < oo it suffices to require f € C)(I'\ G)
with £ > n+1. Our estimate would require k > ky+k2 = ([n/2]+1)+(n+1).
In that estimate we required k;-fold differentiability to ensure continuity of
Py f and control of its norm, ||Pxf|lcc < C||fllx,; in this example Py f is
automatically continuous and || Py f]lcc < C||f]lo so our choice of k; is too
large. The other exponent is chosen so that (11) holds , k3 > n + 1. That
choice cannot be improved here. m
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2.2. EXAMPLE. Let G be the three-dimensional Heisenberg group, re-
alized as R® with the multiplication law

2

This is obtained from the Campbell-Hausdorff formula on identifying g = R3
via a basis Z, Y, X such that [X,Y] = Z. Then log(2,y,z) = 2Z+yY +zX
and I' = Z x 2Z x 2Z is a lattice subgroup. Writing £ € g* as £ = 2Z* +
yY* 4+ 2X™ in the dual basis, the coadjoint action becomes
Ad:xp(zZ+yY+z'X)(2’ !'/, z) = (Z', 3/ - zéai' + yé)

and the Ad* G orbits are

Ad* G(3,0,0)= {2} xR?* if z2#0,

Ad*G(0,y,%) = {(0,9,2)} if 2=0.
The integral orbits that meet log I" are given by

O.={n}xR%, n#£0,n€eZ,

1
Oqu = {(0,p,Q)}, P, q € Ez ’

and the corresponding irreducible representations 7 € (I'\ G)” are precisely
those with integral orbit

7, modeled on L?(R) with 7,(2,0,0) = e2™i"*],

i i : — p2mi(py+gz
Tp,q One-dimensional with 7, o(z,y,z) = e?™iPy+92),

(27 y,:c) : (Z's y’a z’) = (Z +2 + lzy',y + y’,:c + :B') .

For the infinite-dimensional w, there is a single rational ideal m = RZ +RY
that polarizes all the representatives ¢, = nZ* (n # 0), and mNlog " =
(Z)Z + (2Z)Y. The integral characters in M and their orbits under G
and I' are easily calculated. The number of I'-orbits in the G-orbit of
xn(exp H) = 27inZ°(H) ' H € m, is the multiplicity of 7, in L?(I"\ G), as
in [6]: we find that m(7,) = |n|, and similarly m(r,4) = 1.

Since all orbits in g* are flat, P, f is continuous if f € CO(I'\ G) [18);
however, we might need to require that f be in some Sobolev class k; to get
control of ||Pxf||c in terms of a Sobolev norm. (Our choice was k; > 2.)
The second part of our estimate, which says

> 1P flloo < € 30 1P fllks < ' (X 11752 ) £y

#l T#l ¥l

estimates
> lixll=* by Y .

r#l te(log I')Z, t#£0
Here we are overestimating a term ||x||~*2 by summing over all integral
points in the orbit; for the 2-dimensional orbits our choice of k; is too large.
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Our estimate works if f € C(®)(I" \ G), but we actually have finiteness of
the sum

(12) Yl = Y @+ ek

r#l (»,9)#(0,0) n#0

if k; > 3. Thus we only need f € C®)(I' \ G), and in fact we could reduce
k; by considering explicit formulas for the projections P, that are available
in the flat-orbit case [6]. m
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