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The paper falls into two independent sections.

The first section is concerned with extensions of positive operators
and functionals on ordered vector spaces. It has been suggested in part
by a paper by Lo§ and Marczewski [3] on extensions of finitely additive
positive measures. The interested reader can easily apply our results to
set functions (cf. the part of Section 2 preceding Lemma 2).

In the second section we present a characterization of the extreme
points of the set of all positive extensions of a given operator which
generalizes a theorem of Douglas [1]. As an application a simplified proof
of a generalization of a result due to Plachky [4] is given.

Throughout the paper we adhere to the terminology of Schaefer’s
monograph [5]. We use the following notation. ¥ stands for an order
complete vector lattice over the reals R. If 4 < Y is not majorized
(minorized), we write supA = oo (respectively, infA = — o0). We adopt
the convention that sup@ = — oo and inf@ = oo. Throughout M stands
for an arbitrary vector subspace of an ordered real vector space .X.
The space of all (positive) linear operators from M into Y is denoted
by L(M, Y) (respectively, L (M, Y)). Given a vector subspace N of X
with M < N and T e L (M, Y), we put

E(T,N) ={SeL, (N, Y): §|M =T}.

The notation E(T, X)is abbreviated to E(T). Finally, for T e L (M I)
we denote by U(T) the domain of uniqueness of 7T, i.e.

U(T) ={xeX: 8,(x) = 8,(x) for all 8,,8;,€ E(T)}.

Clearly, U(T) i8 a vector subspace of X containing M. -
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1. Extensions of positive operators and functionals. With every
TeL, (M, Y) we associate two maps T, T, : X - YU {4-oo} defined by

T(x) =sup{T(2z): =>2€ M}
T, (x) =inf{T(z): vr<2e M}

Obviously, for every 8 € E(T') and z € X we have T,(z) < 8(2) < T,(x).
This suggests the problem of the existence for a given x,e X and
Yo € [Ti(o)y T.(x,)] of 8 € E(T) with 8(w,) = y, (cf. [3], p. 269). It will
be of our primary concern in this section. First of all we note some more
or less known results.

(i) Given Te L, (M, Y), v, € X and y, € Y with y, € [T;(x,), T,(2)],
there exists a unique 8 € E(T, lin(M U {x,})) such that 8(2,) = y,.

Clearly, the operator 8 defined, for ze M and te R, by S(z+ tx,)
= T'(2)+ty, is as desired.

Using the Kuratowski-Zorn lemma, we get, by (i), the following result
which is due essentially to L. V. Kantorovi¢ (cf. [6], Theorem X.3.1).
This theorem forms a first solution of the problem posed above.

for all ze X.

THEOREM 1. Suppose that M i8 a majorizing (i.e. cofinal) subspace
of X. Then, given Te L (M,Y), 2o X and y,e Y with y, € [T;(x,),
T,.(x,)], there exists 8 € E(T) such that S(x,) = Yy, In particular, U(T)
={weX: T(x) =T, (x)}. |

In the remaining part of this section we assume additionally that
X has a (strong) order unit ». Then

(ii) Given Te L (M, Y) and y,e Y with y, e [T,(u), T ,(u)], there
exists 8 € E(T) such that S(u) = y,. In particular, E(T) # O if and only
it T,(u) < oo.

This follows easily from (i) and Theorem 1 a8 lin(M v {u}) major-
izes X.

LemMMA 1. Suppose TeL (M, Y) and T,(u) < co. Given x,e X
and y, € Y with y, € [T;(zo+eu), T,(wy—eu)] for some e € B, e > 0, there
exists 8 € E(T) such that 8(z,) = y,.

Proof. By (i), there exists 8, € B(T, lin(M v {x,})) with 8,(x,) = o.
Therefore, in view of (ii), it is enough to prove that 8,(u#) < oo, i.e. the
set {T(2)+1ty,: 2e M, te R and z+1ix,< u} is majorized. To this end
observe first that T,(z,—i 'u)>y, whenever ¢>¢'. If, moreover,
2+1try < u, then —t~'2> xy—t"'u, so that T(—t"'2) > y,. Hence T'(z) +
+1y, < 0. Analogously, the same holds if z+tr, <% and t<< —& .
Finally, take n € R, with tw, < nu for all |t| < e . If 2+ tx, <4, then

T() < Ty(u—twy) < (n+1)T;(u),
which yields the assertion.
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For TeL, (M,Y) and v € X we put
Tx+) =inf{T;(x+tu): te R, , t> 0},
T(x—) = sup{T,(x—tu): te R, t > 0}.
With this notation we have
(iii) Given T' e L (M, XY), for any Se E(T) and v e X we have
Ti(@) < Ty(z+) < 8(@) < To (2 —) < T, ().
Now we restrict our attention to the case ¥ = R.
As

1Ti(@+), To(z—)[ = ULTi(x+ eu), T,(z—eu)],

>0
we get, by Lemma 1 and (iii), the following result:

THEOREM 2. Suppose T eL, (M, R) and T,(u) < co. Then, given
2, X and y, € 1T,(vo+), T,(xo—)[, there exists 8 € E(T) such that 8(x,)
= Yo. In particular, U(T) = {we X: Ti(x+) =T, (v—)}.

Let us note that the assumption that y, e 1T;(z,+), T, (wo—)[ in
Theorem 2 cannot be weakened to v, € [T;(z,+), T,(x,—)] even in case
T(xy+), T,(®,—) € R. This is illustrated by the following

Example. Let N = {1,2,...} and put
X={Ytl,:t;eR,A;c N and u=1y.
J=1

Arrange the prime numbers into a sequence {p,: n =2,3,...}
(without repetitions) and put
= {mp,: meN} forn=2,3,...
and
D, = N\{p,: »n =2,3,...}.

Consider the subspace M = {Z‘t,l,,j t,cR} of X and T: ¥ >R

given by the formula
T(Xttn) = d4i
i=1 J=1
Clearly, T e L (M, R) and T;(1y) =1. Put

D= U D,nD,, and &,=1).
n,m=2
n#£Mm

Obviously, T,(1,—) = 1. Observe that
n+l

T.(1p+n7"1y) = ”-IZj—ly

j=1
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so that T;(1,+) = 0. Finally, we show that there is no 8 € E(T) with
8(1p) = 0. Otherwise, as
» n+1
2 11),—”"117 <1y,
J=2
we have
n+l1

D i < 8(Ly),

J=2

so that 8(1y) = oo, a contradiction.

2. Extreme points. We shall give a characterization of the extreme
positive extensions of a given operator T e L (M, Y). This characteri-
zation can be viewed as a generalization of a result of Douglas ([1],
Theorem 1).

THEOREM 3. Suppose X ts8 a vector lattice and 8 € E(T). Then
8 € extrE(T) if and only if inf{S(|x—=z2]): 2e€ M} = 0 for each v € X.

Proof. The “if” part. In order to prove that 8 e extr B (T) it is enough
to show that for any @ € E(T) and ¢ € B, with t8 —Q positive we have
8 = @. Clearly,

1@ (%) —Q(2)] < @Iz —2|) < t8(lw—2).

Hence for z e M and x € X we get
18(2) —Q(z)] < 18(x) — 8(2)| +1Q(2) —Q(2)| < (L +2)8(lw—2]).

It follows that S(z) = @ (x) for z € X.

The “only if” part. Put P(z) = inf {8 (| —2|): 2€ M} for # € X. Then P
is a Y -valued seminorm on X with the properties: P(2) = 0 for 2z e M
and P(x) < 8(|z|) for z € X. If P +# 0, then, by a generalized version of
the Hahn-Banach theorem ([5], ILI.7.9), there would exist §, € L(X, Y)
such that 8, 0 and |8,(z)| < P(x) for v € X. Hence, by the above-
-stated properties of P, 8+ 8, € E(T), so that 8 ¢ extr E(T).

We shall apply this result to set functions. First let us fix some more
notation. In the remaining part of the paper 2 stands for a (non-empty)
family of subsets of a set 2. By 9, we denote the ring generated by 2,
and by # a ring of subsets of 2 containing 2. Put

n
5(2) ={ Y1y 4 e R, Dye 2.
j=1
Clearly, 8(2) is an ordered real vector space. Moreover,

(iv) If 2 is closed under finite intersections, then s(2) is lattice-
-ordered and 8(2) = 8(9,).
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Definition. A function u: 9 — Y _ is a quasi-content provided that
it extends to an additive »: 9, —~ Y ,.

With each quasi-content 4 on 2 we associate a T, € L, (8(9), Y)
defined by

T,,(’Zl‘tjlpj) =j_zl‘t,,u(D,), where t, e R, D, e 2,

and the set F(u) of all quasi-contents on # extending u. Then

(v) The mapping » — T, is an affine isomorphism of the convex sets
E(u) and E(T,).

LEMMA 2. If v 18 a quasi-content on R and & 18 a ring with & < R,
then for each A € # we have

inf{T,([1,—gl): g €8(¥)} = inf{»(4AB): Be ¥}.
Proof. Suppose that B, € & are pairwise disjoint. Then

T,

1o— Y4lp|) = v(AN Y B+ D 1—4»(AnBy)+ 3 itjl»(B\A)
j=1 = j=1

J=1

>»(AN(JB)+ j’inf p(BNA), »(ANB,)}.
j=1

i=1

Hence (cf. (8], p. 50, (1'))

P EM)
J=1

>v(A\£)lB,)+inf{2v(B,‘\A)+ D v(AnB,):IC{l,...,n}}

kel le{l,...,n\T
= inf{v(AAkLe_g B): I<={1,...,n}}

T, (

which yields the assertion.

Now we are in a position to prove the announced application of
Theorem 3. The result we obtain is a generalization of a theorem due to
Plachky ([4], Theorem 1). The denseness condition appearing in it has
been also studied by Lipecki ([2], Section 3).

THEOREM 4. Suppose u i8 a quasi-content on 9. Then

(a) If » eextrE(u), then inf{y(AAC): C € 2,} =0 for each A eR.

(b) If 9 is closed under finite intersections, v € E(u) and inf {»(AAC):
Ce 9.} =0 for each A R, then v € extr E(u).

Proof. (a) By assumption and (v), T, € extr E(T,). Hence, in view
of Theorem 3 and (iv), inf{T,(|]1,—g|): g €8(2,)} =0 for each 4 eA.
Applying Lemma 2 with & = 2,, we get the assertion.
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(b) By assumption and (iv), inf{T,(|f—gl): g € 8(2)} = 0 for each
J € 8(®R). An application of Theorem 3 and (v) completes the proof.

Postscript. After the original version of the paper had been pre-
pared the authors learned about a work by C. Portenier containing a result
which covers our Theorem 3 for Y = R (Points extrémaux et densité,
Mathematische Annalen 209 (1974), p. 83-89, Théoréme 3.5).
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