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We adopt the terminology and notation of [1] and [2]. In particular,
two abstract algebras (A4; F,) and (A4; F,) having the same class of
algebraic operations will be treated here as identical. Given an algebra 2,
we denote by & (2).the set of all non-negative integers n for which there
exists an m-ary non-trivial algebraic operation in % depending on every
variable. The investigation of sets & (2) was suggested by E. Marczewski.
In particular, he proved that for algebras without algebraic constants
and with a k-ary symmetrical (or even quasi-symmetrical) algebraic
operation the set & () contains the arithmetical progression k--j(k—1)
(j =0,1,...) (see [2]). This Theorem for ¥ = 2 was previously obtained
by J. Plonka in [4]. Further results for quasi-symmetrical operations
are contained in [6]. Moreover, a complete description of the sets & ()
for idempotent algebras was given in [5]. Obviously, for unary algebras,
i. e. for algebras with unary fundamental operations, the set () is
contained in {0, 1}. Therefore from now on we shall consider only mon-
unary algebras, i. e. algebras for which & () ~ {2,3,...} #@.

Algebras with symmetrical fundamental operations will be called
symmetrical. Moreover, algebras in which all algebraic operations
depending on every variable are symmetrical will be called completely
symmetrical. The present note contains a complete description of the
sets & () for symmetrical and completely symmetrical algebras which
solves a problem raised by E. Marczewski in [2] for symmetrical
operations.

First we shall give some examples of the sets & () for symmetncal
algebras.

1. Let A be the set of all non-negative integers. Put f,(x) = 0 and,
for n >1, f.(vy,25,...,2,) =1 if 2,,2,,...,2, is a permutation of
2,3,...,mn+1 and f,(@y,®,,...,®,) = 0 in the opposite case. For any
set B of non-negative integers such that 0¢¥ and E A {2,3,...} #0
we put Fp = {f,: neE} and gz = (4; Fg). It is very easy to verify that
& (Uz) = E and Az is a completely symmetrical algebra with 0 as an
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algebraic constant. On the other hand, each completely symmetrical
algebra with algebraic constants satisfies the conditions 0¢ % () and
LA~ {2,3,...} 0. Thus the necessary and sufficient condition for
a set E of mon-negative integers to be a set F(AU) for a completely
symmetrical algebra with algebraic constants is 0eE and E ~ {2,3,...}
#* 0.

2. Let A be an at least two-element commutative semigroup of
idempotents. The algebra 2 is completely symmetrical, has no self-
dependent elements and & () = {2,3,...}.

3. Let G be an at least two-element Boolean group. For any sub-
group H of G we denote by Fj; the family of ternary operations of the
form x-+vy-+2-+a, where aeH, and we put Ay = (G; Fy). The algebra
;; is completely symmetrical, has no self-dependent elements, and
S (Ay) = {3,5,...} if H={0} or Uy) = {1,3,5,...} it H # {0}.

4. Let A be the class of all subsets of the set {1, 2,..., m} (m > 3),
a=1{1,2}and A = (4;a ~ 2 ~ y). The algebra 2 is completely symme-
trical, has no algebraic constants and < () = {1,2,...}.

5. Let U5 be the algebra defined in Example 3 over an infinite
Boolean group @. Let a,, a,, ... be a sequence of elements of G such that

for each r the elements a,, a,, ..., 4. do not belong to a subalgebra of Ay
generated by less than r elements. For any even positive integer » we put

Gr(@1y Zay ooy Try) = @y,

if #,,25,...,2,,, i8 a permutation of the system a,, a,, a,,...,a, and
r41

Gr(@yy oy ovey Xpyy) = Zwi
=1

in the opposite case. Put By = (@; Fg v {g,}). The algebra By is
symmetrical. One can prove that the algebras %; and By have the same
(r—1)-ary algebraic operations. Consequently, the algebra By has no
self-dependent elements. Moreover, the (r- 2n)-ary operation

F(@1y Xay ooey Tryon) = Ge(@1y Zay ooy @)+ Z Ly,

where n > 0, is algebraic in By and depends on every variable. Thus
L (Bg) = {3,5,...} v {r,r+1,...}it H = {0}and £(By) =1{1, 3,5, ...}
v {r,r+1,...} if H # {0}.

6. Let G be an at least two-element Boolean group and N the set
of all positive integers. We define a mapping h from G v N onto G by
the formulas h(x) =« in @ and h(x) = 0 in N. Further, for any even
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positive integer » we define an (r+1)-ary operation h, in G v N by the
conditions:
hr(xly Ly eeey mr+1) =1

if @, 25, ..., %,,, 18 @ permutation of 2,2,3,...,74+1 and
r+1

ho(®yy Zay oovy Tpypa) = Zh(wf)
i=1

in the opposite case. Given an arbitrary non-void set @ of even positive
integers, we put Fy, = {h,: 7eQ} and Uy = (G u N; Fy). Of course, the
algebra 2, is symmetrical and its subalgebra (G; Fp) is equal to
(@; ¢+y+2). Thus ¥ (AUp) o {3,5,...}. Further, h.(z,,...,2) = h(x)
for reQ) and, consequently, h is the only unary non-trivial algebraic
operation in 2y. Hence it follows that 2, has no algebraic constants
and 1e%(Yp). Since the operation h,(z,, 2,, @,, ..., 2,) depends on every
variable, we have the inclusion & (2g) o @. Moreover, for each algebraic
n-ary operation f in g the composition h(f(x,, »,, ..., ®,)) is a sum of
an odd number of operations h(xz,), h(x,),..., h(x,) and, for all re@Q,
he(zyy gy ...y Tpy ) e G o {1}. Hence and from the definition of fundamental
operations h, it follows that every m-ary algebraic operation g, where n
is an even integer and n¢@Q, is a sum of an odd number of operations
h(xz,), h(x3), ..., h(x,) and, consequently, does not depend on every
variable. Thus & (2g) = {1,3,5,...} v Q.

The purpose of this note is to prove that above quoted examples
give all possible sets & (2) for symmetrical and completely symmetrical
algebras. In the sequel {m, m41,...} for m = oo will denote the
empty set.

THEOREM 1. A set E of mon-negative integers is a set & () for
a symmetrical algebra without algebraic constants if and only if either
E>{1,3,5,...} and O¢E or E = {3,5,...} v{m,m+1,...}, where
2 <m < oo.

THEOREM 2. A set E is a set & (A) for a symmetrical algebra without
self-dependent elements if and only if either E = {1,3,5,...} v {m,
m+1,...} or E ={3,5,...} v {m,m+1,...}, where 2 < m < oo.

THEOREM 3. A set E is a set & () for a completely symmetrical algebra
without algebraic constants if and only if £ = {1,2,3,...}, £ = {2,3,...},
FE=1{1,3,5,...}, or E={3,5,...}.

THEOREM 4. A set E is a set S (A) for a completely symmetrical
algebra without self-dependent elements if and only iof E = {2,3,...},
E={,3,5,...}, or E={3,5,...}. Moreover, () = {2,3,...} if and
only if A is an at least two-element commutative semigroup of idempotents.
FA) = {1,3,5,...} if and only iof A is an algebra AUy defined in
Example 3 over a Boolean group.
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Before proving the Theorems we shall prove some Lemmas. The
smallest integer k¥ > 2 for which there exists a k-ary symmetrical
algebraic operation in the algebra 2 will be called the symmetry index

of A.

LEMMA 1. Let U be a symmetrical algebra without algebraic constants
and with symmetry index k > 3. Let h be a symmetrical k-ary algebraic
operation and 2 < 8 < k—1. Put

hy(@yy @3y ..., Xgy1) = h(@yy @ay ooy oy X1y Tot1y ovey Tog1)y

hz(wly Loy eeey m.~1+1) = h(uu Uy oovy uk)’

where u; =@,y of 1<j<m, wy=u if (E—-1)nt+m<j<int+m
(¢2=1,2,...,8) and k=mns+m, 1 <m<s. Then for any wunary
algebraic operation g at least one operation h, (wl,mz, ceey Ty g(a:s+1)) or
hz(m,, Loy ooey Lgy g(ws+1)) depends on every variable.

Proof. Both operations h,(x,, @5, ..., Ts, §(%ey1)) and hy(z,, ,,
...,:vs,g(w,,+1)) are symmetrical with respect to «,,,,...,%,. Since
2 <8 < k, they depend on the variable x,,,. Moreover, to prove the
Lemma it suffices to prove that at least one of them depends on
a variable x; (1 <j < 8). Suppose the contrary

hl(mla Loy eeey Lgy g(ws+1)) =fl(ms+l)7
hz(wly Ly oeey Lgy g($s+1)) = f3(®s41) .

Setting v, =¢g(x) A <j <m), v, =¢g(y) (m <j <8), we have for
all z and y the equation

f1(¥) = Ry (01, 02y o0y 05, 9(9) = ha(9(¥), 9(8)y .., 9(¥), 9(2)) = fo(2),

which implies that the algebraic operations f, and f, are constant. But
this contradicts the assumption. The Lemma is thus proved.

For the definition of simple and complete iterations see [2]. The
same reasoning as in the proving of Theorem 2 in [2] yields the following
Lemma:

LEMMA 2. Let g, and g, be the j-th complete and simple iterations of
a k-ary symmetrical operation respectively. If g, is an (s+1)-ary operation
and the composition go(yl,yg, ceey Yy 91(24, @4, ...,wk,-H)) depends on
every variable, them go(Y1, Yay ...y Ysy o1y Tay ..y Tyje_y))) depends on
every variable too.

LEMMA 3. If U i a symmeirical algebra without algebraic constants
and with symmelry index k > 3, then each integer n > 3 different from
k+j(k—1)4+1 (j = 0,1,...) belongs to & ().

Proof. From Lemma 1 it follows that all integers » satisfying the
inequality 3 < n < k belong to & (). Further, each integer » > % and
different from %¥4-j(k—1)+1 (j = 0,1,...) can be written in the form
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n =Fk+j(k—1)+s, where j >0 and 2 <8 < k—1. Let g, and g, be the
j-th complete and simple iterations of a k-ary symmetrical algebraic
operation. Put g(x) = ¢,(x, z, ..., ). By Lemma 1 there exists an (8+1)-
ary algebraic operation h, such that the composition ho(yl, Ygy eoey Ysy
g(y3+1)) depends on every variable. Hence it follows that the composi-
tion ho(Y1y Yoy .-y Ysy 91(w1’ Lay eeey kai+1)) depends on ¥, Yz, ..., Ys and
on at least one x; (1 <¢ <Kk'*'). Since this composition is quasi-
symmetrical with respect to variables @,, @,, ..., @,7,,, We infer that it
depends on every variable (for the definition of quasi-symmetry see [2]).
Hence and from Lemma 2 it follows that the n-ary algebraic operation
ho(Y1y Yzy -++y Yss Ga(®1y oy - vy Buyige_ry)) depends on every variable.
Thus ne¥(A) which completes the proof.

Proof of Theorem 1. The sufficiency of the conditions is proved
by Examples 3, 5 and 6. Suppose that 2 is a symmetrical algebra without
algebraic constants. Since the symmetry index % of 2 is a prime, we infer
by Lemma 3 that in the case & > 3 the set & () contains all odd integers
greater than 1. By quoted above Plonka’s Theorem this inclusion is also
true in the case k = 2. Obviously, 0¢5(2). Suppose that 1¢% (), i.e.
4 is an idempotent algebra (see [5]). Since ¥ (A) o {3,5,...}, we infer
by Theorem 1 in [5] that either & () satisfies the assertion of the Theorem
or (AU) ={2,3,...,n} v {n+2,n+3,...}, where n is an odd integer.
To prove the Theorem it suffices to show that the last case never holds.
By Theorem 2 (Assertion 2) in [5] all n-ary algebraic operations in 2
are algebraic in a diagonal algebra and, consequently, are not symmetrical.
Thus k¥ > n and, by Lemma 3, n+1¢%(2) which gives the contradiction.
The Theorem is thus proved.

LEMMA 4. Let A be a symmelrical algebra without self-dependent
elements and without binary algebraic operations depending on every
variable. If the set & () does not contain {3, 4, ...}, then for every ternary
algebraic operation f satisfying the conditions
1) fle,y,9) =fy,=,9), fl@,z,2)=Ff(z,y,9) or [f(=,2,9),
the equations
(2) f@,9,9) =fy,y,2) =g@), glg@) =2
hold.

Proof. Contrary to this let us suppose that there exists an algebraic
operation f satisfying (1) and not satisfying (2). Consequently, one of the
following three cases holds:

(3) f@,y,9) =fy,9,2) = g(y),
(4) f®,9y,9) =9@®), fly,9,2)=9g),
() f@,9,9) =f(y,9, ) = g(=), g(g(w)) # @.
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If g(g(m)) = x, then, by (1) and (3) or (4), for any pair a,b of
elements of A the algebra (a, b; g(f(w, v, z))) is isomorphic to one of the

Post algebras P* or P (see [3], p.200) and, consequently, & (A) >
{3,4,...}. Thus '

(6) glg(@)) #2 (zed),

because 2 has no self-dependent elements.
Consider the case (3). If f(x, ¥, g(y)) does not depend on z, then, in
view of (1), the equation

9@) =fly,¥,9) =Fla), v, 90) =Ffly,9%), 9(%) = g(9(v))

holds which contradicts (6). Thus f(z, y, g(y)) = g(#), because 2 has
no binary algebraic operations depending on every variable. Setting
folzyy,2) = f(m, Y, g(2)) we obtain an operation satisfying (1), (4) and (6).
Thus the case (3) can be reduced to the case (4).

Now consider the cases (4) and (5). Suppose that f(y, g(y), ) does
not depend on x. Then, by (1) and (4) or (5), we have the equation

9lo@) =flg),v,9) =flv,9),9) =fly, 99, 9(¥) = 9(y)

which contradicts (6). Further, if f(y, g(y), #) does not depend on y,
then, by (1) and (4) or (5), f(y,9(%), %) = g(g(»)) and, consequently,
y(y(g(y))) = f(v, 9(¥), 9(y)) = g(y) which contradicts (6). The Lemma is
thus proved.

Proof of Theorem 2. The sufficiency of the conditions of the
Theorem is proved by Examples 2, 3 and 5. In order to prove the necessity
let us assume that 2 is a symmetrical algebra without self-dependent
elements. Moreover, by quoted above Plonka’s Theorem, we may assume
that the symmetry index k of 2 is greater than 2.

Let h be a symmetrical k-ary algebraic operation and h; its j-th
complete iteration. First let us assume that for each integer j there
exists a binary algebraic operation p; such that the composition p;(y,,
hi(®y, 2y ..., ®,5,1)) depends on every variable. Hence it follows, in
virtue of Lemma 2, that k+j(k—1)+1 (). Consequently, by Lemma 3,
Z(YU) o {3,4,...} which implies the assertion of the Theorem.

Now let us assume that there exists an index j for which the
composition p(y,, k;(®,, ©,, ..., #,;,,)) With every binary algebraic
operation p does not depend on every variable. Since k; is a quasi-symme-
trical operation, the last composition does not depend either on y,
or on all variables ,,,,...,,4.,. Consequently, for every binary
algebraic. operation p the composition p(z,q(y)), where g¢(x) =
hi(x, x, ..., x), depends on at most one variable z or y. Put

W(Lyy Tayoeny T) = h(Q(m1)7 q(%3)y «eey Q(wk))-
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Of course, the algebra 2, = (A4; w) is symmetrical and has no self-de-
pendent elements. Moreover, for any binary algebraic operation p, in 2,
there exists a binary algebraic operation p in A such that p,(z,y)
= p(q(«), ¢(y)). Thus there are no binary algebraic operations in 2
depending on every variable. Setting f,(z,¥,2) = w(x,y,2,2,...,2)
and f,(z,y,?) = w(2,2,y,2,¥,...,2,Y) We obtain algebraic operations
in A, symmetrical with respect to z and y because the number k of
variables in w being the symmetry index of A is an odd number. Moreover,
file,y,y) = fa(y,y,x) which implies that at least one operation
filz,y,y) or fi(x,xz,y) does not depend on the variable y and,
consequently, either f,(x,y,y) = ji(®,z, ) or fi(z,z,y) = fi(z, z, 2).
Thus we have proved the existence of an algebraic ternary operation f
in 2, satisfying the following conditions:

f(®,y,2) =fly,2,2), [f(z,z,)=f(®,y,y) or f(x,x,y).

Hence, by Lemma 4, either #(2,) o {3,4,...} or f(z,y,y) =
= f(y,x,y) =f(y,y,x) = g(x), where g(g(z)) = «. In the first case we
have the inclusion & (2) o {3, 4, ...} which implies the assertion of the
Theorem. In the remaining case setting f,(x, ¥, 2) = g(f(w, Y,2)) we get
an operation in 2 satisfying the condition

(7) Jfol@,y,9) = foly, =, y) = foly,y,x) = =.

Let g, be an n-ary algebraic operation depending on every variable.
Put

V(Tyy Byy ooy Tnys) = fol@ni1y Tnizy Gn @1y Toy ooy T4)).
Since, by (7),
V(Byy By vy Tny Ty B) = Gu(Lyy Bay eevy &),
'U(a’la Zay ooy By Tng1y In(Zry Lay .oy a’n)) = Tpt1y
'v(:vl, Loy oooy Tny n(Byy Bay ovvy Bn)y Tnys) = Tnysy

the operation v depends on every variable. Thus n4 2% (2) whenever
nes (A). Hence it follows by Theorem 1 that the set & () satisfies the
assertion of the Theorem which completes the proof.

Proof of Theorem 3. The sufficiency of the conditions of the
Theorem is proved by Examples 2, 3 and 4. Suppose now that X is a com-
pletely symmetrical algebra without algebraic constants. If & (™) <
{1,3,5,...}, then the Theorem is a consequence of Theorem 1. In
the opposite case ¥ () contains an even integer and, consequently, the
symmetry index of 2 is equal to 2. In this case the Theorem is a direct
consequence of Plonka’s Theorem which completes the proof.



8 K. URBANIK

Proof of Theorem 4. Examples 2 and 3 show that the conditions
of the Theorem are sufficient. In order to prove the necessity of these
conditions consider a completely symmetrical algebra 2l without self-
dependent elements.

First let us assume that 2e%(2A) and, consequently, by Theorem 3,
that &£ (%) o {2, 3,...}. Given an arbitrary binary algebraic operation g
depending on every variable, we put #y = g(x, y). Since ¢ is symmetrical,
we have the commutative law 2y = yxr. Moreover, the composition
g(z, 9(y, 2)) depends on every variable and, consequently, is symmetrical.
Hence we get the associative law x(y2) = (xy)z. Thus zy is a commutative
semigroup multiplication in A. Further, the operation ¢(z, g(y, y))
depends on both variables and, consequently, is symmetrical. Thus
9(z, 9y, ) = g, g(x, 2)), i. e. 2y® = ya?. Setting y = &2 into the last
formula we obtain #° = * and, consequently, (2*)® = z*. Hence we get
the formula 22 = x for all elements xe¢A, because the algebra A has no
self-dependent elements. Thus (4; xy) is a commutative semigroup of
idempotents. Moreover, g(x, ) = « for every binary algebraic operation
depending on every variable. Since for every unary algebraic operation f
the composition f(zy) depends on both variables, we have the equation
& = f(2?) = f(x). Thus all unary algebraic operations in 2 are trivial
and, consequently, & () = {2,3,...}. To prove the Theorem in the
case 2% () it remains to prove the formula % = (4; 2y). Let f be an
n-ary algebraic operation in 2 depending on every variable and, conse-
quently, symmetrical. We shall prove the formula

(8) F(@yy Tgy oy Tp) = f(21%fy Tay ..., ) (1 < J < m).

If f(%,%p 1y @2y ...y @,) does not depend on x,,,, then (8) is obvious,
Suppose that it depends on x,,, and, consequently, depends on every
variable. Then f(x,%,,:,®2,...,®,) i8 a symmetrical operation which
implies the equation

f(wlwn+17w2; ooy @p) = f(@1, 5, coey Tj_1y TiTp 1y Tjyay ooy &p).

Setting x,,, = x; into this equation we obtain formula (8). The
iteration of (8) yields the formula

n n n n
J(@yy @ay ...y Tn) =f(”wia nwh ceey an) = nwh
j=1 F=1 F=1 7=1
which shows that f is algebraic in (A4;axy). Thus 2 = (4; xy) which
completes the proof in the case 2e 5 (A).

Now suppose that 2¢% (™), i.e., by Theorem 3, that ()
= {3,5,...} or {1,3,5,...}. By Theorem 2 (Assertion 3) in [5] ¥ (¥)
= {3,5,...} if and only if % = (G;x+y-+=2), where G is an at least
two-element Boolean group.
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Consider the case ¥ (2A) = {1,3,5,...}. For each ternary algebraic
operation h depending on every variable and, consequently, symmetrical,
we have the equation h(x,x,x) = h(x,y,y) or h(z,z,y). Hence in
view of Lemma 4 we get the formula g(g(m)) = 2z, where ¢(x)
= h(x, x, z). Since for every unary algebraic operation f the composition

f( (h(x,y,2 ))) depends on every variable and f( g(h(z, x w))) = f(z), we

have the equation f(f(z)) = x. Let A be the class of all algebraic opera-
tions ¢ satisfying the condition g¢g(x,z,...,2) = 2. Each algebraic
operation v is a composition of an operation from A4 and a unary algebraic
operation. In fact, v(®,, @y ..., %) = f(g(1, T2y ..., %)), Where f()
=v(®,2,...,2) and g(@, Ty, ..., Tn) = f(v(@y, ,, . ,wn)) Setting A,

= (4; A) we get a completely symmetrical algebra with & (2,) = {3, 5, ...}
By the previous part of the proof, %, = (G; z+y -+ 2), Where G is an at
least two-element Boolean group. Moreover, for any unary algebraic
operation f in 2 the operation f(x)+f(y)+2 is algebraic in A, and
depends on every variable. Thus f(z)+f(y)+2 = #+y+2, whence the
formula f(x) = x+ f(0) follows. Let H be the subset of G consisting of
all elements f(0), where f are unary algebraic operations in 2[. Obviously,

is a subgroup of G and each algebraic operation in 4 is a composition
of operations x+y+2+a (aeH) and trivial operations. Thus the alge-
bra 2 is equal to the algebra 2y defined in Example 3 which completes
the proof.

REFERENCES

[1] E. Marczewski, Independence and homomorphisms in abstract algebras,
Fundamenta Mathematicae 50 (1961), p. 45-61.

[2] — Remarks on symmetrical and quasi-symmelrical operations, Bulletin de
I’Académie Polonaise des Sciences, Série des sciences mathématiques, astronomiques
et physiques, 12 (1964), p. 735-737.

[3] — and K. Urbanik, Abstract algebras in which all elements are independent,
Colloquium Mathematicum 9 (1962), p. 199-207.,

[4] J. Plonka, Diagonal algebras and algebraic independence, Bulletin de
I’Académie Polonaise de Sciences, Série des sciences mathématiques, astronomiques
et physiques, 12 (1964), p. 729-733.

[6] K. Urbanik, On algebraic operations in idempolent algebras, ibidem 12
(1964), p. 739-741, and Colloquium Mathematicum 13 (1965), p. 129-157.

[6] — Remarks on quasi-symmelrical operations, Bulletin de 1’Académie Polo-
naise des Sciences, Série des sciences mathématiques, astronomiques et physiques,
13 (1965), p. 389-392.

INSTITUTE OF MATHEMATICS, WROCLAW UNIVERSITY
INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES

Regu par la Rédaction le 11. 5. 1965



