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Suppose that L is an uncountable first-order language. In this paper
the effects on the value of the Morley number for L of restrictions on
the cardinality of the type, or set of types, to be omitted are considered.
Specifically, it will be shown, for example, that if a cardinal can be char-
acterized by a theory T and a type X, both of power A, then that
cardinal can be characterized by a theory T" and a type X', there T’ has
power A and X’ has power equal to the supremum of the inaccessible cardi-
nals smaller than or equal to A.

Morley numbers (also called Hanf numbers for omitting types) were
first introduced by Morley in [4], p. 265-273. Basic results and definitions
may be found there, or in [5]. '

1. Introduction. Throughout this paper, & and { will denote ordinals,
and the remaining lower case Greek letters will denote cardinals. For
a set A, |A| denotes the cardinality of A. The cafdinal 2(x, &) is defined
by induction on é:

2(x,0) =%, 2(x,&+1) =22(n,$),
and if ¢ is a limit ordinal, then
2(x, &) = sup{2(x,{): £< &}.

L denotes a first-order language, T a theory in L, and X2 a type, that
is, a set of formulae of L. The formulae of X are assumed to have only
the variable v, free. Notation, except where otherwise indicated, is that
of [1].

Definition 1.1. The cardinal A is ‘characterized by the pair (T, Z)
if every model of 7 which omits X has power less than A and, for every
v < A, T has a model of power » which omits X.

From this definition we obtain the following lemma:

LEMMA 1.1. If (T, X) characterizes v and T is of power at most x,
2 i8 of power A < x, then there is & pair (T', Z'), in an extension of L, which
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characlerizes v, such that T' has power at most x and
Z = (o, # 0 £< AU {U(w))

for some set of constants {c.: & << A} and some unary relation symbol U.

Proof. Let T and X be given such that (T, X') characterizes », T has
power of at most x, and 2 has power 1, where A < »x. If » < 4, then with
the set of new constants {¢;: £ < A} and a new unary relation U adjoined
to the language L of T to yield a language L' one takes the theory T' to
consist of the sentences:

(Vo) U(vy), 1o =0, for §,(<v» and ¢ =¢, for v < E<A.

Then (7', 2’) characterizes » (and reference to T is not required).
Thus, it may be assumed that » > A.

‘Now, let = = {f;: &< A}, and let R be a new binary relation symbol
which is adjoined to the language L’ described above to yield a language L".
Then 7" is the theory TC1Y) (T relativized to —] U) together with the follow-
ing sentences:

(1) U(e,) for £< 4,

(2) (V5) (1T () = (30,)) (B(25, 1) & U(vy)),

(3) (Vo5)(T1fe(vo) < R(w,, ¢;)) for &< A.

So, for each model B of T, a model A of T' may be constructed such
that the reduct of A [ 71U to L is isomorphic to B. In addition, if B
omits X, then A omits Z’; and, furthermore, in this case, |B| > A implies
|B| = |A|. So, for each a < », T' has & model of power a which omits X',

Lastly, to show that (1", 2’) characterizes », suppose that 4 is a model
of T' which omits X’ and |4|>». Then A | U has power at most 1, and
since » > 1, A | 71U must have power greater than or equal to ». By (2),
every element of A [ 7|U is related by R to ¢, for some &< i (X being
omitted by 4). So, by (4), for all ae |A | T1U|, A kF 7] f:[a] for some
<A Thus A | 71U omits X and, therefore, has power less than »
— a contradiction. It follows that all models of 7" which omit X’ have
power less than », and hence (T, X’) characterizes ».

Hence, we may assume that X is a set of formulae of the form
{710 = ¢)): E< A}u{U(n)},

where {c;: &< A} is a set of constant symbols and U is a unary relation
symbol.

LEMMA 1.2. If the cardinal A is characterized by the pair (T, X), then
or every cardinal v which is less than ) there i3 a cardinal o such that » < o < 4
and T has a model of power o which omits X and which has no elementary
extension omatiing Z.
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Proof. Suppose that the result does not hold for some cardinal A
and some pair (7', 2). Then there is a cardinal » < 4 such that every model
of T of power greater than or equal to » which omits 2 has an elemen-
tary extension which omits 2.

So an elementary chain {4.: &< A} of models of 7 which omit X
may be constructed as follows. Let 4, be such a model of power ». If A,
has been constructed for £ < {, where { < 4, then let A, be an elementary
extension of | J 4, which omits Z in case

é<?
U4l <4,
é<?t

and let A; be

Ud, if |4, = 4.
i<t £t

Then (J A, isamodel of T which omits 2 and it has power A — a con-
é<a

tradiction to the fact that 4 is characterized by (T, X).

If v is a cardinal characterized by a pair (T, 2), where T and X are
contained in a language of power at most » and |X| < A, then we say that »
i8 characterized at (x, A) (by (T, X)).

Note that » is characterized at (x, ») if and only if » is characterized
at (», A) for every cardinal which is greater than or equal to x.

2. Oinitting a single type. To study the problem stated at the beginning
of this paper we formulate the following definition:

Definition 2.1. For cardinals » and 4,
#1(%, A) = sup {» : » is characterized at (a, f) for some a < x» and g < 4}.
This is one of the refined Morley numbers referred to in the title of

this paper.
Morley [4], p. 265-273, showed that

B1(Ry, 8) = 2(X,, N,)

and, for any =,
Bty %) < 3 (M, (29)7).

Chang [2] has given a simple proof that u,(x*, x*) > 2(N,, »*) if
cf(x) > N, (this was first observed, assuming V = L, by Morley and
Morley [6]) and Helling [3], using the generalized continuum hypothesis,
showed that if cf(x) = Ny, then u,(x, x*) = 2(R,, »).

THEOREM 2.1. For cardinals v, x, 4,, and A, if v is characterized at
(%, 4,) and, for some A, gréater than i, and less than or equal to v and x, A} is
characterized at (x, A), then v is characterized at (x, A).

-
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Proof. First note that 1, < x.

Suppose that (T',, 2,) characterizes » at (x, 4,) and (T,, 2;) charac-
terizes A7 at (x, ) for some A, such that 1, < 1, < x, where T, T,, and X,
2, are formulated in languages L, and L,, respectively, which have only
logical symbols and individual variables in common. Using Lemma 1.1,
we may suppose that

2y ={vy # 6 E< A3 {U (v,)}

for some set of constant symbols {¢,: £ < 43}, where 13 < 1,;, and some
unary relation symbol U.
Put

L = LIULgu {Ul’ Uz, R}U {de: §< 12},

where U, and U, are new unary relation symbols, R is a new binary rela-
tion symbol, and {d,: & < 1,} is a set of new constant symbols. We consid-
er the case A3 << Ay; the case 13 = A, follows from a simplification of the
following argument.

Select a model B of T, which omits X,, has power A;, and has no
elementary extension omitting X, — such a model exists by Lemma 1.2.
Let T be a set of sentences in L such that if A F T, then

(1) U, and U, partition 4;

2) AT U;ET; for ¢ =1, 2;

(3) A E Uy(d,) for all &< 4,3

(4) the reduct of A | {d, : £ < A,} to L, is isomorphic to B;

(6) A E R(ceyd,) for §< 13 and A F B(cy, d;) for 13< &< 4,.

Lastly, put 2 = Z,U{U,(v,)}.

Then |T| < » and |2| < A. If C is a model of T which omits X, then C
omits

fvo # ds: E< A}V {Us(vy)} = Z,.

Indeed, if C realized X3, then the reduct of C [ U, to L, would be
isomorphic to a strict extension of B by (2), (3), and (4), and so, by the
definition of B, it would realize 2,. Hence C would realize 2 by the defi-
nition of 2.

It follows that X, U {U,(v,)} = Z, is omitted by C — for suppose a € C
and a realizes 2, in C. By (b),

C k (Vv,) (319,) R(vy, v,),

where 3! is interpreted as “there is a unique ...”. So there is an element
b € C such that C F R(a,b) and, by (b), b # d, for all £< A;. Hence
C | U, realizes X, and so C realizes Z, which is a contradiction.
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Since C | U, is a model of T; and omits X,, we have |C | U,| <,
and since O [ U, is a model of T, and omits X,, we obtain |C | U,| < 4,.
Consequently, [C| <<y (for A,< ).

COROLLARY 2.1. If v 48 characterized at (x, A,) and, for some A, greater
than or equal to A, and at most equal to v and x, A, 18 characterized at (x, ),
then v is characterized at (x, A).

Proof. If A, is characterized at (x, 1), then, using results of Morley [4],
p. 265-273, so is A7, and the result follows from Theorem 2.1.
If 4 is a cardinal, put

A¥ = sup{r < 1:v is weakly inaccessible}

and
A¥¥ — gup {v < A:v is strongly inaccessible}.

THEOREM 2.2. If v is characterized at (x, A), then v ts characterized
at (x, A¥).

Proof. We consider two cases.

Case 1. y > 4. The proof proceeds by transfinite induction on 4,
having observed that if A = A¥, then the result holds trivially.

Suppose that the result holds for all g such that g < A.

If x< A, then » is characterized at (x, ) and so, by the induction
hypothesis, » is characterized at (x, »*), and hence at (x, 1¥) — since
% < A implies »* < A*. Thus, we may suppose that » > 1.

(a) Suppose that A = gt for some B. Since x> g+, g+ is character-
ized at (x,f), and so, by the induction hypothesis, at (x, %). Using
Corollary 2.1 and the fact that (87)* = g¥, if » is characterized at (x, #7),
then » is characterized at (x, (8%)¥).

(b) Suppose that 1 > A¥, 1 > cf(4), and

A= 2 a;
£ <cf(3)

for some set of cardinals {a, : £ < cf(4)} such that a; < A for all & < cf(4).
For &< cf(), a; is characterized at (a,, a;), and hence at (x, a;) since,
by assumption, x > 2 > q,. It follows from the induction hypothesis that a,
is characterized at (x, af), and hence at (x, A¥) — again, since a, <24
implies aff < A¥. Similarly, cf(1) is characterized at (x, A¥).

It now follows, using & method from [4], p. 267, that 1 can be charac-
terized by a pair (7, X)), where

IT| < xef(A)+cf(A) =x and | Z| < A*ef(A) +of (1) = A¥ +cf(2).
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That is to say, A can be characterized at (x, ¥+ cf(1)). Now A¥* 4 cf (1)
< A using the assumptions on 1; 80, by the induction hypothesis, 4 can
be characterized at (x, A¥).

Suppose that » is characterized at (x, ). By the above, 4 can be char-
acterized at (x, A*), and 50 v can be characterized at (x, A*) by Corollary 2.1.

Case 2. v < A. Clearly, » can be characterized at (v, ») and so, by Case 1,
at (v,»¥), and hence at (x, A¥) if » <. If »> %, then » can be charac-
terized at (x, »), and s0 at (%, »¥) and (x, A¥).

This concludes the proof of the theorem.

COROLLARY 2.2. For cardinals x and A, p,(x,2) = py(x, (A¥)*) if
A £ A¥,

This follows immediately from the definition of x4, and Theorem 2.2.

The above result can be improved. To do this, we first observe the
following

LEMMA 2.1. If v is characlerized at (x,A) and A< 2°<v for some
cardinal a, then v is characterized at (x, a).

Proof. Obviously, we may assume that a < A. Now, 2° can be charac-
terized at (a, a) (see [4], p. 265-273), so if a < %, then 2° can be character-
ized at (x, ) and the result follows by applying Corollary 2.1.

In the remaining case, namely a > x, the result is trivial.

We now state the main theorem of this section.

THEOREM 2.3. For cardinals x and A, if A # A%¥#, then

pi(xy 2) = py ("7 (l##)-'-)'
Furthermore, if » i8 smaller than or equal to A, then

By A) = py(x, x).
Proof. The second result is obvious.
To obtain the first result, the induction in the proof of Theorem 2.2
is extended using Lemma 2.1. So, a further case, 3, is obtained:

Case 3. Suppose that A = 2 for some cardinal g < 4, and » is charac-
terized at (x, ). By Lemma 2.1, » is characterized at (x, B).

So, in particular, we note that if 6, is the first strongly inaccessible
cardinal and Ny< A< 6y, then pu, (%, 1) = py(%, Ny).

Similarly, if no strongly inaccessible cardinal exists, then u,(x, A)
= Wy(%, N;) for all 1 > N,. -

3. Omitting sets of types. We begin by extending Definition 1.1.

Definition 3.1. Let © denote a set of types. Then the cardinal 4
is characterized by the pair (T, ) if every model of T, which omits every
type in &, has power smaller than 4 and, for every cardinal » smaller
than 4, T has a model of power at least » which omits every type in S.
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Definition 3.2. For a cardinal 0, 0 is characterized at (x, A, v) (by
the pair (T, G)) if S is a set of types such that |S| is at most equal to i,
Tul| G is contained in a language of power at most », each member of S
has power at most », and (7, S) characterizes 6.

Definition 3.3. For cardinals x, 4, and », we define
pa(%y, A, v) = sup{6: 6 is characterized at (x,, 4,, »,)
for some x;, < %, 4, < A and », < »}.

In this section we examine u,(x, 4, ») — the second refined Morley
number. A proof of the following theorem may be found in [2] and [7].

THEOREM 3.1. sy(xt, (2)F, x¥) = 2(N,, (2°)*).
Next, observe that u, is a non-decreasing function with respect to
each variable. Put
2’»’1 = p<*,

A<x

THEOREM 3.2. If » 48 a limit cardinal, then

(i) pa(x, 2% %) =2 (R, D'(2)) if 28 <2 for all A< %
A<x
and

(ii) Ba(%y (2<%, %) = 2(Ry, 2<%)  if 28 = 2<* for some A< x.
Proof. (i) First,
Ba(x, 2<%, %) = sup {0 : 6 is characterized at (x,, 1,,»,)
for some x, < %, 4, < 2<* and », < x}
= sup {p, (A", @Y, A1) s A<} if 2 <2< for all A< x.

The result follows, after an application of Theorem 3.1, from the
fact that

2 (M, 2(2‘)+) = sup {2 (Ry, (2)*) : A< #).

A<xn

To see this, observe that since 2* < 2<* for all 1 < x, there is a sequence

(A¢ : &< cf(x)y which is cofinal with » and such that 2" < 8" for £< ¢ <
< cf(x). Then '

sup {2 (Mo, (2*) 1 A< ) = 2(Ny, Y (2)*)

A<x

from the definition of 2(a, §), 8ince x is a limit cardinal.

2 — Colloquium Mathematicum XXXIX.2
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(ii) If 2% = 2<* for some A< x, then
'.’"2("1 (2<%, ") = sup [.“2 (l+7 24+, A+) A< "l
= sup {2 (%, (2Y)*) : A< #} = 2(Ry, (2°9)F).
THEOREM 3.3. (i) pa(x™, 4, %) = ps(x¥, (x=")*, %) if 1> x=".
(i) pa(xy 4y v) = pa(x, 4, %) if v > =.
These follow directly from the definition of u,(x, 4, »).
THEOREM 3.4. If % i8 a limit cardinal and

A> 2a<',

a<x

then
Ba(%, 4, v) = /‘2(", 2(a<')+, "’)-

a<x

Proof. Since u, is non-decreasing, we have

Balxy 4y 9) = a3 D) (@), )

a<lx

by the assumption on x, 4, and ». Conversely,

Ba(x%, A, v) = sup{py(a*, 4,7):a < x}
= Sup {ps(a, (a=)*,»):a< %} by Theorem 3.3 (i)
< sup {ps (%, (a<)*, 9) : a < x}

= Ps ("3 2 (a=)*, ”)-

a<lxs

THEOREM 3.5. (i) If A < v < %, then

Pa(%y Ay ) = pay (%, »).
(ii) If v < A< %, then

pa(%y Ay ) = pay(%, 2).

Proof. Both results follow from the fact that a set of a types each
of power less than f may be replaced by a single type of power less than
or equal to max {a, 8} — the technique for doing this may be found in [4],
p. 267.

From the results above, u, can be evaluated (considered as a function
on the class of cardinals) if u, is known and also

(1) pa(x*, 4, ») is known for all x, 4, and » such that

k<A< (29F, »<x", and x> x;
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(2) ms(2, 4, v) is known for x a limit cardinal and all 4 and » such that
x<A<2, v<%x, and 06" > x for some 0< x.

If the generalized continuum hypothesis is assumed, then the results
above simplify considerably since 2° = a* and 2<° = a for all cardinals a.
In particular, 4, can then be evaluated entirely if u, is known.

The author would like to thank the referee for his many helpful
comments and, in particular, for the simplified proof of Theorem 3.4.
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