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INDEPENDENT SUBALGEBRAS OF A GENERAL ALGEBRA
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1. In this note we use the terminology and notation of [4], [6] and
[1], but we say “general algebra” instead of “abstract algebra”. Some
of the theorems obtained here arose from questions posed to us by Professor
Edward Marczewski. He proposed the following definition:

Two subalgebras B, and B, of a general algebra W = (A4; F) are
tndependent if, for every pair of homomorphisms h;: B;—4 (1 =1, 2),
there exists a homomorphism h: C(B,uB,)—>A such that h|p, =k
(t =1,2).

2. We extend Marczewski’s definition for a set of subalgebras of .

Definition. A set # of subalgebras of an algebra W = (A4; F) is
independent if, for every family of homomorphisms hz: B—>A4, Be S,
there exists a homomorphism

h: C( U B) - A
BesS
such that h|p = hg for Be S.
We denote by 2¥ the set of all subalgebras of U and we use the nota-

tion £ eind 2% (or, shortly, £ <ind) if # is an independent set of subal-
gebras of A.

Example 1. The notion of independence of subalgebras is con-
nected with the notion of a free product of algebras (see [3] and [7])
similarily as the independence of elements is connected with the notion
of a free generated algebra. Recall that an algebra A is a S -free product
of its subalgebras B and C if A = C(Bu() and, for every pair of ho-
momorphisms hg: B—D and hy: C—D, there is a homomorphism h:
A—D such that h|g = hy and k|, = ho, where D is an arbitrary algebra
from the class o of algebras of the same similarity type as the algebra A.
This definition makes sense also for algebras without determined similarity
type (non-indexed algebras) whenever 4, B and C are subalgebras of a cer-
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tain algebra A, = (4y; F) and X < 2%. One can speak about a X -free
product of a set of subalgebras of U,.

Note that the set # of subalgebras of N, is independent if and only if
the subalgebra

A =C(U B)
BesS

is a A -free product of subalgebras Be S for any A such that A,e X = 2%,
In particular, it is true for o = 2% and for " = {4} (= {%}).

Example 2. The following notion of independence (which we
shall call #-independence) of subalgebras of a Boolean algebra is well

known:
The indexed set {B,};.r of subalgebras of a Boolean algebra

N=(4;{v,n,’,0,1})
is #-independent if |
b +#0
teT,
jor an arbitrary finite Ty < T and b, # 0, b;e B; (see [6], Section 13).
Theorem 13.1 of [6] shows that any #-independent set of subalgebras
is independent in our sense. Note that the converse is also true. Indeed,
let #¢ind 2%, where % is a Boolean algebra, and suppose that 4 = {B:
Be s} is not #-independent. Hence there are elements b,,..., b, such
that 0 + b;e B;e S, B; # B;for¢ # j,and b,n ... Nb, = 0. As it is known,
for any b; there exists an ultrafilter #; in B; such that b;e F; for ¢ =
1,...,n. Define homomorphisms h;: B;—~A by

1 fOI‘ aEF‘,

h;(a) =
(@) 0 otherwise

(h; is & homomorphism, for #; is an ultrafilter). Note that h;(b;) = 1,
and thus there exists no homomorphism
h: C (U B) - A

BesS

such that h; = hlg, for ¢ =1,...,n, because othe‘rwise/’
1 =hy(by)N...0h,(d,) = hk(byn...Nb,) =h(0) =0.

Example 3. If % is a unary algebra, then, as it is easy to see, any
set of pairwise disjoint subalgebras of U is independent. The following
example shows that, in general, this is not true for non-unary algebras.
Viz. A = {a, b, ¢} and o is a binary operation such that zoec = cox =¢
for every ve A and xoy =« for ¢ ¢ and y # ¢. Let

hy: {a} - {c} and hy: {b} - {b}.
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If there were a homomorphism h: {a,b}—>A such that h(a) =¢
and h(b) = b, then
b =h(b) = h(boa) = h(b)oh(a) = h(b)oc = ¢,

which is a contradiction.

3. It follows immediately from the definition of the independence
of subalgebras {B: Be .} that, for every family of homomorphisms {hg},

the homomorphism
(+) h: C(UB)—A
BesS

such that h|gp = hp is unique. It is also obvious that the independence
of a set # of subalgebras is a hereditary property with respect to subsets
of #. It can be easily shown that the independence of a set # of subalgebras
of A is an invariant property with respect to meromorphisms (injective
homomorphisms). Namely, if A = (4; F), S < 2% and mapping (+)
i8 a meromorphism, then S <ind 2% if and only if {h(B): BeS}eind 2%

The following theorem implies that the independence of a set of
subalgebras (like the independence of a set of elements; see [4]) is a prop-
erty of finitary character:

THEOREM 1. Let N = (A; F) and # < 2%. Then S ¢ ind 2% if and only if

(*) for any family of homomorphisms hg: B—~A, Be S, if f and g are
n-ary and m-ary algebraic operations in W, and a;e A;e S, bje Bije S
(¢t=1,...,m; j=1,...,m; n,m =1,2,...), then the equality

Jlay, ..., a,) = g(by, ..., by)
implies
f(hAl (@y), ..., hA,,(a'n)) = g(hBl(bl)’ ceey th(bm))'

Proof. The necessity of (*) is obvious; we shall show that (*) is
sufficient. We define mapping (+). If
ae C(U B),

Be S

then there exist an algebraic operation f and elements a;e A;¢ £, i =1,...
..., n, such that a = f(a,,...,a,). Put

h(a) = f(hay (@), -5 ha,(an)).

Condition (*) guarantees that the definition of & is correct. It is easy
to see that A is a homomorphism and k| = hg for Be £, which completes
the proof.

COROLLARY 1. The independence of a set of subalgebras is a property
of finitary character (i.e., S € ind if and only if # < ind for any finite £, < F).

Indeed, this corollary follows from (*).
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COROLLARY 2. Every independent set of subalgebras is contained in
some maximal independent set of subalgebras.

In fact, it follows from Corollary 1 and Tukey’s Lemma.

COROLLARY 3. If F<ind2¥, |#|> 2, and ae B for every Be.#, then
hg(a) = a for every homomorphism hg: B—A, BeS.

Indeed, let B, B;e# and let hy be the identity homomorphism.
Putting for f and g in () the unary trivial operation we obtain a = kg (a)
We call an element ae A a quasi-constant with respect to subalgebra
B of A (see [2]) if ae B and h(a) = a for every homomorphism #: B—A.
Using this notion, we can formulate Corollary 3 in the following way:

If an element belongs to the intersection of a family of independent
subalgebras, then it is a quasi-constant with respect to each of them.

In particular, in algebras with one constant ¢ (e.g., in groups, rings
and modules) this intersection is always equal to {c}. In algebras with
a basis it is equal to C(@), and in idempotent algebras it is the empty
set (see [2]).

4. Now we examine some connections and analogies between the
independence of a set of subalgebras and the independence of a set of
elements.

THEOREM 2. If A = (A; F) and I is an independent subset of A, then
{C({a}): acI}eind.

Proof. If h,: C({a})—>A, acl, is a family of homomorphisms, then
we define the mapping p: I—-4 by

p(a) = hy(a) for every ael.

Since I is independent, this mapping can be extended to a homo-
morphism h: C(I)—A. Note that h|¢,, = h,, Which completes the proof.

The following example shows that the converse is not true:

Let A = (A4; {f}) be a unary algebra, where A = {a, b, ¢}, f(a) = b,
f(b) = a and f(¢) =e¢. {{a, b}, {¢}} is an independent set of subalgebras
(it follows from the remark in Example 3). However, {a, ¢} is not an inde-
pendent set of elements, because ¢ is a self-dependent element.

Nevertheless, we have

THEOREM 3. Let I be a set of non-self-dependent elements of an algebra U.
If {C({a}): acI}eind, then I is independent.

Proof. Let p: I-A. Since every element ae I is non-self-dependent,
Pl can be extended to a homomorphism k,: C({a})—>A for every
acI. And since {C({a}): acI}cind, there exists a common extension
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of h,; (aeI) to a homomorphism k: C(I)—>A. Obviously, k|, = p, which
completes the proof.

Let H, be the smallest family of mappings from subsets of algebra
A = (4; F) into A, containing all mappings, which can be extended to
homomorphisms and closed with respect to restrictions and “stickings”
of mappings on disjoint subsets (see [1], p. 28). The last two theorems can
be formulated more briefly using the following notion of H,-independ-
ence [1]:

{C({a}): acI}cind 2% if and only if I<Ind(%, H,).

The following more general theorem can be obtained in the similar
way as Theorems 2 and 3:

THEOREM 4. Let {I,};.p be a family of independent and pairwise disjoint
subsets of an algebra UA. Then

{C(I,): te T}e ind 2%

if and only if \U I, is an independent set in A.
teT

The next theorem is analogous to the “exchange theorem” of [4]
(see (ii), p. 58).

THEOREM 5. Let (F,uf,)eind, S NS, =0, SFreind and let a set
S = S, ewxist such that

c(UB) =C(UB).
Bes) Bes,
Then (F,UFy)« ind.
Proof. For De (£,uf,), let hp: D—A be a family of homomorphisms.
Since f,eind, there exists a homomorphism

h: C(UD)—>A
Desy '

such that h|p, = hp for any De #,. Obviously, k is also a homomorphism
from C(JB) into A. Put k% = h|g for Be#}. Since S,nsY =G and
Be.fg

(F,ufY) eind, there exists a homomorphism
0 1 ’

R': C ( U B)—=4
Be(SHu s

such that A°|p = h% for Be #) and A’|, = hy for De #,. We show that
h°|p = hp for De (F,0F,). It is obvious for De J,. If De 4,, then

D < C(UB)’

Bs.f‘l)

3 — Colloquium Mathematicum XXTX.2
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and thus for de D there exist an n-ary algebraic operation f and elements
b;e B;e S} (t =1,...,n) such that d = f(b,, ..., b,). Thus we have

B(d) = B (f(byy ... ba)) =F(A(B1), --s B'(by)) = F(B(B1), -- -, B(Dy))
= h(f(byy .-, b)) = h(d) = hp(d).
This completes the proof of Theorem 5.
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