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All spaces under consideration are completely regular. If X is a space,
then X* denotes the Cech-Stone remainder X — X of X, and X** denotes
(X*)*.

The space Y is homogeneous if for any two points # and y of ¥ there
is a homeomorphism % from Y onto itself with & (x) = y.

The space Y is nowhere locally compact if no point has a compact
neighborhood.

1. Introduction. Frolik [9] has proved that X* is not homogeneous
if X is not pseudocompact (see also [8]). The proof is based on a cardinality
argument, it does not show why X* is not homogeneous, since it does not
yield two points with different behavior. The purpose of this note is to
give a proof of special cases of Frolik’s theorem, which show why X* is
not homogeneous. This has been done previously under the assumption
of additional set-theoretic axioms (see [1] and [12]), but we emphasize
that we only use the axioms of ZFC. Our proof hinges on the following
concept, related to but different from the remote points of Fine and Gill-
man [7] (see Remark 4.1).

Definition. If Y is a space, pe Y and A < Y, then p is far from 4
in Y if there is no closed discrete subset D of the subspace A such that
p € ClyD.

1.1. THEOREM. Let X be a nowhere locally compact metrizable space.
Then some but not all points of X* are far from X** in fX*, and so X* is
not homogeneous.

The key to this theorem is the following lemma:

1.2, LEMMA. Let X be a nmon-compact metrizable space without tso-
lated points. Then there is a point in X* that is far from X in pX.
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It has been already known that this is true if X is the reals [7], but
that proof does not work for the general case. The fact that the lemma holds
if X is the rationals is of independent interest, and will be used in [2}
and [5]. A totally different application of the lemma will be given in Re-
mark 4.5.

We prove Theorem 1.1 from Lemma 1.2 in Section 2, prove Lemma 1.2
in Section 3, and collect some remarks in Section 4.

We use N, Q and R for the positive integers, the rationals and the
reals, respectively.

2. Far points and non-homogeneity. Theorem 1.1 is an immediate
consequence of Lemma 1.2 and the following facts:

Fact 1. Let h be any homeomorphism of Y onto itself. If p € Y i8 far
from Y*, then so is h(p).

Indeed, the Stone extension ph:fY — Y is a homeomorphism.

Facr 2. If X is nowhere locally compact and not countably compact,
then some point of X* is not far from X** in pX*.

Proof. Let f: pX* — X be the (unique) map with f(x) = 2 for
x € X*. Since X is nowhere locally compact, X* is dense in X and, con-
sequently, f maps X** |onto X (see [6], p. 126, or [10], 6.11). Since con-
tinuous maps preserve countable compactness, X** is not countably com-
pact. The result follows.

Faor 3. If X is nowhere locally compact, and some point of X* is far
from X in BX, then some point of X* is far from X** in fX*.

Proof. Let f : X* — X be the unique map with f(z) = = for z € X*.
As above, f maps X** onto X. Let p € X* be not far from X**. Then
there is a closed discrete set D in the subspace X** with p € Clyp.D.
The restriction f|X** is a closed map from X** onto X, since f is closed.
Hence f~D is closed in X. But, clearly, p = f(p)€Clyxf~D. Hence p is not
far from X in X,

3. Construction of far points. The construction of far points depends
on the simple Lemma 3.1 below. We first introduce the notation

PD(X) ={Dc<c X: D is a closed discrete subset of X}.

3.1. LEMMA. The following are equivalent for a mormal space X:

(a) there is a point p in X* which is far from X in BX;

(b) there is an open family % = {U(D): De 2(X)} in X with
D < U(D) for D e 9(X), such that no finite subfamily of % covers X ;

(c) there is8 a closed family F in X with the finite intersection property,
such that for each D € 9(X) there is an F € F with FnD = @.
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Proof. (a) = (b). For each D € 2(X) choose an open U (D) in X with
p ¢ClyxU(D) and D < U(D).

(b) = (¢) is trivial.

(e) = (a). Choose any pe ({ClixF:FeF}. If DeP(X), then
there is an F e # with FnD = @. Then Cly;x FNClzx D = @ since X is
normal, whenee p ¢ Clyx D.

Before we proceed to the formal proof of Lemma 1.2 we explain the
idea of the proof. Let X be a non-compact metrizable space without iso-
lated points. We want to construct # = {U(D): D € 2(X)} a8 in Lem-
ma 3.1 (b). To this end we will find open U(z, D) and V (x, D) whenever
zeDeP(X) such that

(A) ze U(z, D) < V(z,D);

(B) V(z, D)nV(y, D) =@ for distinet z,y € D;

(C) V(x, D)— U(x, D) is “big”, in a sense to be made precise.

Then for D € 2(X) we put

U(D) = U {U(», D): z e D}.

Let # be a finite subcollection of 2 (X), say # has m members. There
should be a G e# and a g €@ such that V(g,G)—U(g,G) (recall (C))
is not covered by

{U(@,D): xe DeF,D # Q};

then, by (B), the U (D)’s, D € #, do not cover X. Since# — {G}hasm — 1
members, V (g, G)—U(g, G) should, in some sense, have size m.

The major technical difficulty in a proof along these lines is the
possibility that some U(z, D), with x € D e # —{G}, intersects V (g, @) —
—U(g,@), even if x ¢ V(g,@). This difficulty could be avoided if X
had a non-Archimedean base; recall the following definition:

Definition (cf. [11]). A base # for a space is called non-Archimedean.
if A= BorAnB =@ or A =2 Bforall A, Be 4.

This would put severe restrictions on X since it is clear that the
members of a non-Archimedean base for a T',-space are closed. Fortu-
nately, there is an easy way out..

3.2. LEMMA. If the normal space S contains a closed subspace T such
that some point of T* is far from T in BT, then some point of 8* is far from
S n B8S.

This is a trivial consequence of Lemma 3.1 (¢); of course, there also
is an easy direct proof.

3.3. Proof of Lemma 1.2. Let X be a non-compact metrizable
space; choose some compatible metric. The proof is divided into three
steps.
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Step 1. We construct a closed subspace Y of X, a cover {¥,,: m € N}
and a non-Archimedean base £ = | {#,: n € N} of Y such that

(1) each £, is a disjoint open cover of Y;

(2) 8, = {X¥,,: meN};

(3) each A € #,,, is included in some member of %,;

(4)if Be #, and B<c Y,,, then B includes m 41 members of #,,,,.
Since X is not compact, there is a discrete open family

# = {U,: meN}

congisting of non-empty open subsets of X, with U,, # U, if m # k. With
an easy recursive construction one can find families #°,, n > 2, consist-
ing of non-empty open sets such that

() diam W < 1/n for We#,,n=>2;

(6) for each We#,,, there is a Ve#, with Wc V,n>1;

(7) VAW =@ for distinet V,We¥ ,,n>2;

(8) for each Vew,, if V< Y,, then V includes exactly m1
members of #°,,,,n>1.

By induction one shows that #°,, n €N, is a discrete family, hence,
by (6),

(U#ur)) sU#, mneN.
Therefore

Y =N (U%%)

neN

is closed. We put
Y,=Y¥YnU,,meN, and %, ={YnW:We¥#, },neN.

But then we have to make sure that no member of #,, n €N, is
empty. To this end we construct, simultaneously with the #7,’s, subsets
8, of X such that the following holds for n e N:

(9) each member of #°, contains exactly one point of 8, ;

(10) each element of 8, is contained in a member of #,;

11) 8, = 8,4,

The “exactly one point” is essential if we construct #°, ,, knowing
# ,, for it enables us to make sure that for each V e %", there is a
WeW# ,,, with W <V which contains the unique point of §,NnV. Without
this restriction we might not even be able to get §, = (U¥# .,

Step 2. For each m € N there is a family
%m = {Um(D)' De Q(Ym)}

congisting of open subsets of the subspace Y,,, such that
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(12) D < U, (D) for D e 2(Y,,);
(13) Y,, is not the union of m members of %,,.

Throughout the remaining part of this step we drop the subscript
m in %, and U, (D). Write o, for {A € #,: A<= Y,}; let

o =od,.

neN

We first discuss properties of o/ needed in the sequel. For each A € of
the smallest » with A € o, exists (in fact, » is unique), call it the level
of A and denote by A(4). Then (1) and (3) imply

(14) forall A, B € o, if A(4) > A(B), then either A = Bor ANB =@.

Algo, by (1)-(3) there is for each y € Y,, and n € N a unique 4 € &
with 4(A) = n and y € 4, denote it by L(y, n). Then

(15) {L(y,n): n € N} i8 a neighborhood base at y for y € Y,,.
Let ye D e 92(XY,,); since D is discrete, (15) enables us to put

n(y, D) = min{k e N: L(y, k)nD = {y}}.
Next write
V(y, D) = L(y,n(y, D)), U(y,D) =L(y,n(y,D)+1), yeDeD(¥y,);
U(D)=J{U(y,D): ye D}, De9(Y,);
% = {U(D): D e 9(X,,)}.

We prove that this % satisfies (12) and (13). That (12) holds is clear.
It follows from (14) that

(16) for all D € 9(X,,), if #, y € D are distinct,. then
V(x, D)nV(y, D) = 0.

(Since V(y, D)— U(y, D) has size m, by (4), we see that (A), (B) and (C)
of the explanation of the proof hold.)

Let # € 2(Y,,) have cardinality less than or equal to m. Our plan
i8 to construct, in at most m steps, an 4 € o with AnU(D) = @ for all
D e#, using (4) and (14); since O ¢ «, this will prove (13). To this end
we introduce the following definition:

Let A € o and D € 2(Y,,). Then we say that A cuts D provided that

(17) if ye DNnA, then n(y, D) > A(4);

(18) if ye D— A, then U(y, D)nA = 0.

CoamM. If Ke o, if F < 2(X,,) has 1 < |F| < m, and if K cuis every
member of #, then there is a K' € o/, and there i8 a proper subfamily F'
of & such that

4 — Collogquium Mathematicum XLI.1
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(«) K' = K;
(B) K'nU(D) =9 for D eF —F';
(y) K’ cuts every member of #'.

To see that (13) follows from the Claim, let # < 2(Y,,) have 1 < |#}
< m. Then by at most m applications of the Claim we can find a (neces-
sarily non-empty) A € & with ANU(D) =@ for all D e# (start with
K =1,).

Proof of the Claim. Put

4 ={De¥: DnK # @}.

For =0 put K'=K, #'=0. This works since, by (18), U(D)nK
=@ for D e#F —%. Next assume that ¥ #0. Find G ¥ and g e GNK
such that

(19) n(y, D) > n(g,3d) whenever De ¥ and y € DNnK.

By (16) there is, for each D € ¥4, at most one y € D with V(y, D)
=7V(g,@). Since i(V(y, D))=n(y, D) whenever yeDe2(Y,,), it follows
from (4), (19) and the fact that |4| < m that there is a K'es such that

(20) K' < V(g, ®);

(21) A(K') =n(g, @) +1;

(22) n(y, D) > n(g9,@) whenever De¥% and y e DNnK'.

Put ' =% — {@G}. We will show that K’ and #' work.

We check («). Since g € K, we have n(g, G) > A(K) by (19). Hence
V(g,@) = K by (14). Therefore, K’ = K by (20).

We check (B). K' < V(g,@)— U(g, G) by (22). Hence K'nU(G) =9
by (14).

We check (y). Let y € D e #.

Casel.y ¢ K. Then U(y, D)NK' = @ by («) and (18), since K cuts D.

Case 2. ye K—K'. Then

MU(y, D)) = n(y, D)+1>n(g, &) +1 = A(K’)

by (19) and (21). Hence U(y, D)nK’ =@ by (14).

Case 3. y € K'. Then

n(y, D) = n(g, G)+1 = A(K')

by (22) and (21).

This completes the proof of the Claim. Thus Step 2 is completed.

Step 3. There is a family # = {U(D): D € 2(XY)} consisting of open
subsets of the subspace Y, such that

Dc U(D) for De 2(Y);

% has no finite subcover.
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Indeed, since {Y,,: m € N} is a pairwise disjoint family of open sub.
spaces of Y, we can define the U(D)’s by
U(D) = U Um(DnYm)'
meN
Then, by Lemma 3.1 (b), there is a point in Y* that is far from Y in Y-
Hence, by Lemma 3.2, there is a point in X* that is far from X in gX.
This completes the proof of the lemma.

4. Remarks. From now on, a point [in X* that is far from X in
pX will be called simply a‘far point.

4.1. p € X* is called a remote point in BX if p is not in the closure
of a (not necessarily closed) discrete subset of X; for metrizable X this
is equivalent to requiring that p ¢ A4 for all nowhere dense A4 in X.

Remote points have been introduced by Fine and Gillman [7], who
have shown that under CH AX has a remote point if X =R or X = Q
and, in fact, if X is a non-compact separable metrizable space (ef. [7],
Theorem 2.3). In [1] it is shown that this holds under Martin’s Axiom,
which is strictly weaker than CH.

Remote points and far points are not the :sa,me. Indeed, let A be a no-
where dense closed subspace of Q without isolated points. Then there
is a far point p in Q*NA4.

4.2. In the special case X = R Eberlein has given a very simple
proof of Lemma 1.2: Let x be Lebesgue measure; then

% = {U < R: U open, u(U) < oo}

satisfies Lemma 3.1 (b) (see [7], footnote 4). This argument also
works if X = {irrationals},or X = {Sorgenfrey line}, so for these X the
proof that X* is not homogeneous is particularly simple.

43. If Y is a space, pe Y and A < ¥, call p w-far from A in Y if
there is no at most countable closed discrete D in the subspace 4 with p € D.
It is clear from the argument in 3.1 that if X is not Lindelof, then some
point of X* is w-far from X in fX. Hence the ideas of Section 2 lead to

PrOPOSITION. If X i8 a normal nowhere locally compact space which 8
neither Lindelof nor countably compact, then some but not all points of X*
are w-far from X**, and so X* i3 not homogeneous.

We do not know if normality is essential. A much more interesting
question is whether the proposition holds for Lindelof spaces. Since closed
discrete sets in a Lindel6f space are at most countable, this leads to the
following question:

QUESTION (P 1066). Let X be a non-compact Lindelof space without

isolated points. Is there an open family # which has no finite subcover
yet for each closed discrete D in X thereisa U e with D < U?
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4.4. In [2] and [5] the following corollary to the proof of Lemma 1.2
will be used:

LEMMA. There i8 a family % in Q such that
(1) for every m e N and finite # < %,

Q—([—m,mluU#F) #0;

(2) for every closed discrete D — Q there 18 a U € % with Dc U.

To show this, in the proof of Lemma 1.2 let Y = X = Q, and for
m e N let

Y, ={gecQ: m—V2 < |g| < m+1—V2}.

4.5. A totally different application of far points i§ the following.
Let » be a far point in fQ, let T be the subspace QU {p} of Q. Then
there is no relatively discrete .D in T' which has p as a unique cluster point.
It follows from [3] that 7' is not stratifiable, yet T'— {p} is stratifiable,
being metrizable, and T is countable. Another example of this type has
been given in [4].
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