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Let Jo, a > —1/2, be the Bessel function of the first kind of order a.
For suitable test functions on R; one has Hankel’s inversion formula

—_ oO‘]'i"(a:y) ooJa(yt) a a+1
1@ = J Gt J G 108 ey,

Define the Rth partial sums of this integral by
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and the maximal operator associated to the partial sums by

S*f(z) = sup |Srf(Z)].

C. Herz (1954) showed that the pa.rtlal sums converge in the norm of
LP(R,,z?2+1 dz) if and only if foti 2a+3 <p< 2—;1’—‘}, and E. Prestini (1988)
obtained for the same range of p’s the boundedness of the maximal operator.
C. Kenig and P. Tomas (1980) showed that at the critical indexes the partial
sum operators are not of weak type (p,p), but S. Chanillo (1984) showed
that these operators are of restricted weak type (p, p).

In this paper we want to present a new and short proof of Chanillo’s re-
sult, and at the same time to show that at the critical indexes the maximal
operator is of restricted weak type. This of course implies the almost ev-
erywhere convergence of the partial sums of functions in the Lorentz spaces
LERA(R,, 220 do) + LEHA(Ry, 02+ da).

Recall that the Lorentz spaces LP9(Ry,z2°t1dz) are defined by the
(quasi-)norms
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where f* is the non-increasing rearrangement of f.
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THEOREM L. Ifp = $&44 or if p = 4241, then the mazimal operator S*
is bounded from LP!(R,,z2%t1dz) into LP°(R,.,z2+1dz).

THEOREM II. (i) The partial sum operators {Sr} are not bounded from
L3Ry, 220+ dz), 1 < r < 00, into L3a33°(R,, 220+ dz).

(ii) The operators {Sgr} are not defined from Liattr(R,,z?*+dz),
1 < r < 00, into the space of tempered distributions.

Proof of Theorem I. We first consider the case p = z—aﬁ- Then
Srf(z)

= f (xy)-a RZJG'*'I(Rz)JOI(R:z) : -;zy']a-!-l(Ry)Ja(Rz)f(y)y2a+l dy
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These four terms are similar, and since the functions +/2Js(t) are
bounded, we are led to consider the operators
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The operator Z can be studied via the duality between the Lorentz spaces
L33 (R, 22041 dz) and L3833 °(R,, z20+1dz). Indeed, by the Holder
inequality for Lorentz spaces,

1Zf(z)] <z=o"V2 [ y=o=32|f(y)|y?*t dy
0
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Since y—°~3/? is in L3R, z?*+1dz) and z7°"'/? is in
L3a¥ (R, z2°+1 dz), it follows that the operator Z is bounded from
L33 (R, 2%+ dz) into Liath (R, 229+ dg).

To study the operators {Tr} decompose

Taf(e) = [ (et U iy iy

= f\/R—yJa(Ry)(zy)'“ (zy);l/_? —y” f(y)y*o*tdy

U}
\/-_Ja(R?l)

+f(/)°’ f(y) dy

= Hrf(z) + Krf(z).-

This is the main idea of the paper. We have substituted the weight
(y/z)**+'/? in the definition of the operators {Tr} with the weight (y/z)*
in the definition of {K r}. This will allow us to apply the theory of A,
weights to p = a4 T1- The operators {H r} will be studied via the dua.hty

between L3a¥11(R,,z2°+! dz) and L35 °(R,, 229+ dz). We have
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The maximal operator associated to the operators {HR} is therefore

dominated by the function z~>~1/2, so that it is bounded from

sats . tats
L2+ (R, 2?21 dz) into L2=+1'®(R,, 222+ dx).

The boundedness on the Lorentz space At (R4, z22%1 dz) of the in-
dividual operators in the family {KRg} is an immediate consequence of the
boundedness of the Hilbert transform on the spaces LP(R,.,z~2P+22+1dz),
2 < p < (2a + 2)/a. Therefore at this point we already have a proof of S.
Chanillo’s result. However, to study the maximal operator associated to the

operators { K} we need the following lemma, which is essentially contained
in the paper of E. Prestini (1988).
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LEMMA.
sup |Krf(z)| £ c{M1f(z) + M2f(z) + C f(=)},

where

Mif(z)= = [ (/2)°15()ldy,
0
M@= [ @I,

2z .
exp(tR
Cie)=sup| [ (u/z) 2R piy) ay).
R 22 =Y
Sketch of the proof. It is clear that
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Also, by the asymptotic expansion of Bessel functions
VtJa(t) = /2/xcos(t — ar /2 — 1/4) + E4(2),
tE,(t) and t$ E,(t) bounded, we have
2z
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The first term is controlled by the Carleson operator C f(z), while it
can be shown that the error is controlled by a combination of the maximal
Hilbert transform, hence by C f(z), and of the Hardy-Littlewood maximal
functions M; f(z) and M, f(z). See the paper of E. Prestini for the details.

"

Now we can conclude the study of the maximal operator associated to
the operators { Kg}.
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By Hardy’s inequalities the operator M; is bounded on every
LP(R,,z%2*1dz) with 2 < p < oo, while M; is bounded on every
LP(R,,z?°*t1dz) with 1 < p < 00 if -1/2 < @ < 0, or with 1 < p <
(2a + 2)/a if a > 0. Also, by the theory of A, weights, the Carleson op-
erator C is bounded on LP(R,,z2*!dz) for 2 < p < (2a + 2)/a. Hence,
by interpolation, these operators are also bounded on the Lorentz space
L%'I(R.,., z22+1 dz), and a fortiori they are of restricted weak type.

This concludes the proof of the theorem in the case p = ;—fﬁ. The proof

in the case p = 3244 is similar. One has to decompose the operators {Tr}
as

Trf(z) = f(my)'“"/ 2%;}@)“”3’2““ dy
0

ry zy)~ 12 -2
= [ \/RyJa(Ry)(zy)'“( y); _zy 1f(y)yz"“dy
0

b [ ey T g,
0

and argue as before. »

Proof of Theorem II. Parts (i) and (ii) of this theorem are essen-
tially due to C. Kenig and P. Tomas (1980), and to J. L. Rubio de Francia
(1989), respectively. We reproduce here their arguments for the sake of
completeness.

(i) By the asymptotic expansion of Bessel functions, if 1 < y € z we
have

o R2Jot1(R2)Jo(RY) — RyJoas1(Ry)Jo( R2)

(zy)~ 22— g
2 mla+1) w\ _,_ap Ta T\, -a-1/2
R — cos (Ra: 5 4) z cos (Ry 5 4) ] .

Hence, if the function f is chosen appropriately in the unit ball of
4da+4

L2a+3" (R, z2*+1 dz) and with support in the interval [1, k], and if z > k,

then

Srf(z) = ly™* x5 ()|l sate 272732,

2a41'?
1/r+1/s= 1. Butif s < 0o, then ||y‘°‘1/2xllik](y)||§g+t:_’, — 00 as k — oo.
(ii) It is well known that the operators {Sr} do not map the space of
test functions into L3a¥3*(R,., 22+ dz) if s < co. Hence, by duality, if

r > 1 the operators {Sg} cannot map L%H (R4, 2241 dz) into the space
of tempered distributions. =
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We conclude with the remark that Theorem I was also obtained by
A. Crespi (1989), and E. Romera and F. Soria (1989), using the techniques
in Chanillo’s paper. Y. Kanjin (1988) also studied the convergence and
divergence of spherical means for radial functions in L? spaces using trans-
plantation with Jacobi expansions.
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Added in proof (October 1990). For functions on RN define Sf(z) =
fl f<1 f(€)e2™¥#%d¢. C. Fefferman (1971) proved that the operator S is bounded on LP(RY)

only if p = 2. Indeed, it is possible to show that this operator is not bounded on the Lorentz
spaces L2"(RN) if r # 2.



