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1. In this note we investigate some problems connected with factor-
izations in algebraic number fields, which were stated in [1] and [3].

Let K denote an algebraic number field, Ry its ring of integers, H the
class group, and h the class number of K. By G,, we denote the set of all
elements of Ry with factorizations of m distinct lengths and by @G,, the
set of all positive rational integers contained in @,,. The number of non-
associated integers a in G,, with |N (a)| < # will be denoted by &, (z) and,
similarly, the number of positive integers less than or equal to « lying
in @,, by @,,(x). If X is an element of H and a € Ry, then Qx(a) will denote
the number of prime ideal divisors of aRy lying in the class X and counted
according to their multiplicities. By p, p;, ps, ... we always mean prime
ideals. Finally, if ¥ and N are positive integers, then C; will denote the
cyclic group of k elements and Cy the product of N copies of C,.

2. It is well known that G,, =@,, =@ if h<2 and m > 2. In [3]
it was shown that for & > 3 either G,, = @ or

G (@) ~ C(m, K)z(logloga)Pm0 (logay)~4tmH),

where C(m, K), A(m, H) are positive and B(m, H) non-negative.
A similar result was obtained also for @,, and G,, (z).
Now we prove that for the set @,, the first alternative never occurs.
THEOREM 1. If h = 3, then G,, #O for m =1, 2, ...

Proof. For any subset U of H we denote by R(U) the set of those
integers in Ry which generate ideals not divisible by prime ideals of classes
belonging to H\ U.

If H contains an element X of order ¢ > 3, we take U = {X, X'}
and we will show that R(U) contains elements with any prescribed
number of distinct lengths of factorizations.

Let m be a positive integer. Choose a € B(U) such that
Qx(a) = 2, ,(a) =t(m—1).
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Let
(1) a =d,d,...d,

be a factorization of a into irreducibles.

From the definition of R(U) it follows that each irreducible factor
appearing in (1) generates an ideal of one of the following types:

1 pPsy PreX,ppe X7
2. pre..Ppy Ps€X;
3. Pr...Py Ps XN

Let u; (1 < i < 3) denote the number of d,’s in (1) which correspond
to the ¢-th type. Then

(2) Uy +tuy, = uy+tu; = t(m—1),
and the length of factorization (1) equals

1
r o= U +Uug+u, = -t-(2t(m-1)+(t—2)u,).

Hence this number is equal to the number of non-negative values
of u, for which (2) has a non-negative solution u,, u;. Obviously, the last
can happen only for «, € {0, ¢, 2¢, ..., (m—1)t}. This proves that a € @,,.

If H contains only elements of order 2 and k&> 3, then we take

U={X,Y, XY}, where X, Y are distinct non-unit elements of H.
If a € R(U) with

Qx(a) = 2y (a) = xy(a) = 2(m—1)

has factorization (1), then only the following types of irreducibles can
oceur:

1. P1Ps; Py Pa€ X;

2. P1Pay P1, Pa€ X;

3. P1P2y P1; P2 € XY

4. P1PsPsy P1€X,pyeY,p e XY.

Let u; (1< i< 4) be the number of d;/s in (1) of the i-th type. We
get a system of equations

20, +uy = 2uy+uy = 2uz+ug = 2(m—1),
r = Uyt U+ U+ Uy = 3(m—1) —u,,
and we infer easily that the set of admissible values for u, is {0, 2, ...

ceey 2(m—1)}, 80 a €@y,.

For the set @,, we can prove a similar result only in the quadratic
case.
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THEOREM 2. If K is a quadratic number field and h > 3, then @,, # O
Jor m =1,2,

Proof. If H contains an element X of order ¢ >3 and p € X, then
N (p) = pp,, where p, is a prime ideal in X~'. Thus the rational integer
n = (N(p))™ " belongs to R({X,X}), Qx(n) = 2, ,(n) =t(m—1),
and as in the proof of Theorem 1 we get % € G,,.

If H = 0% k>2,X # Y are non-unit elements, and p, € X,p, € ¥,
Ps € XY, then n = (N (p,) N (ps) N (ps))™ ' is contained in R({X, ¥, XY}),
2x(n) = 2p(n) = 2xp(n) = 2(m —1). Consequently, as in the proof of
Theorem 1 we obtain n €G,,.

3. In [3]it was noted that in the case H = (3 we have
A(m,H) =%, B(m,H)=3m-1.
In the same way it can be proved that
A(m,0}) =%, B(m,0:) =2m—-1
and
Am,0,) =%, B(m,C) =2m-1.

A direct computation of those constants for other groups is rather
complicated as the number of minimal equalities in H increases very quickly
with A. But, nevertheless, we state the following

CoNJECTURE (P 1247). One has

A(m, H) = A(1, H) _1——(,?—) and B(m, H) = A(H)m+ B(H),

where A (H), B(H) are rational integers, and ¢(H) is a combinatorial con-

stant which was defined in [3] (This constant will be discussed later on.)
4. Let G be a finite abelian group. If ¢,, ..., §; €@ and

(3) gt ... g =1,

then this equality will be called minimal if

1° ;>0 for 1<i<kand (ny,...,n) #(0,...,0);

20 if o< m<n; (1<i<k) and g;'...g,* =1, then either all
m;’s are zero or m; = n;fori =1,..., k.

We say (as in [1]-[3]) that the minimal equality (3) satisfies condi-

2 ' n'
Ordg‘

=1
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A subset U of @ is said to have property (C) (in such a case we write
U € (C)) if every minimal equality of the form (3) with ¢,,...,9,€ U
satisfies condition (C).

By t(@) we denote the maximal cardinality of a set U € (C).

Property (C) is closely connected with factorizational properties
of integers in K; namely, if U is a subset of class group of K, then
R(U) < @, if and only if U € (C).

In [3] it was shown that

n+p—2

#C,) =n+1 and t(G;)<( pot

)+1.

To investigate further the values of ¢(G) we consider a weaker prop-
erty of minimal equalities than (C);namely, we say that the minimal equal-
ity (3) satisfies condition (C,) if

k
Z e eZ.
o ordg,

Similarly as before we define property (C,) of subsets of G and the

corresponding constant ¢,(@). Obviously,

(4) HE) < 1(6).

Let m be the exponent of @ and f a homomorphism of @ to m~'Z/Z.
Put

1
G, = {g e@: f(g) = ordg}'
LeMMA 1. A subset U of G has property (C,) if and only if there exists
feHom (G, m™'Z|Z) such that U < G,.
Proof. Let U = {g;,...,9:} € (Co) and let f: U —>m"'Z|Z be de-
fined by

fg:) = ordg, .

Obviously, f can be extended to a homomorphism of @ if and only

8
5o
L eZ.
Zt‘ordgiE

if g7 ... g% =1 implies
=1

But there exist integers w,, ..., w; such that the equality

wyordg; +8 wrordg,+8; __
! 1 l_“gkk kT8 —= 1
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has positive exponents, and so is a product of minimal equalities. Therefore

k
Z w,ordg; s, <z
ordg, )

t=1
The converse is trivial as each G, has property (C,).

Now let @ = (0, ® ... 0, with n,]|...|n, =m and let X; denote
a generator of C,..

LEMMA 2. If A = (a4, ..., a;) 8 a k-tuple with 0 < a; < n; and
k

b, .

U, = {X?l XZ": %% _ min (b;, a9

n; 1I<i<k By

(mod 1)},

i=1
then U4 € (C,). Conversely, for each U with property (C,) there exists a k-tuple
A such that U < U,.

Proof. Observe that each f € Hom(@, m~'Z/Z) is uniquely deter-
mined by a k-tuple (a,, ..., a;), 0 < a; < n;, and f(X;) = a;/n;. But

ord (X2 .. Xb" = ma.x{
1<i<k

('"'n 1)}

and comparing this with Lemma 1 we get our assertion.

COROLLARY. #,(C,) = d(n) (the number of divisors of n) and t,(C2)
=n-+1.

THEOREM 3. d(n) > t(C,) = R2(n)+1, where Q2(n) denotes the number
of prime divisors of n counted according to their multiplicities.

Proof. The left-hand inequality follows from (4) and the Corollary.

Let d,, ..., d, be a set of dnnsors of n w;th d,|...|d;, and g a generator
of C,. We shall shoy that the set {g s +++y g ¥} has property (C).
It (g)™...(¢")™ =1 with pomtive integers M, ..., M, then

nin,d,+ ... +nd,, and this implies that for some n,, ..., %

(5)

’ n
N, (2<8<k—1), 'nk_l"}"nk = '—'nk.
d dy

Indeed, if n|n,d,+ ... +n;d;, then

» dy da,
E]' 'nll_l‘nz“d-l + coe +nk'd_1,

and as
d,

—_—

d,

ay
@

d,

n
a @

8 =2, -oo’k)’
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there exists m, such that

n , d d
-5 ('”'1+’na)+'n3'—s+--- +’nk'—k-
dy dy

dy ,
"y, = d+3 n, and
1 2

Continuing this process we obtain (5).

Further
k n 1 k
Z_Ordgdf = szdi = MNy.

i=1 tm=1
Taking m; = 1 we can determine 0 < m,, < n; and m;_, > 0 such that

m,_,+m, = 2o — —
k-1 k — dk k — dk .
Proceeding further in this way we obtain 0 < m; < n; (0 <i<Ek),
not all equal to zero, and non-negative integers m,, ..., m, such that equa-
tions (b) are satisfied if we replace n;, n; by m;, m;. Thus

k
0Tm
T _1;

a;\my dje\my;
=1 d =
(97)" ... (97 an & ord g%

hence our set has property (C).

Remark. As can be seen from Lemma 2 the set {g%4, has prop-
erty (C,). For some » it has also property (C). But as the following ex-
ample of a minimal equality in C,, shows:

(9°)4(9°)(9**)%(g*°)H(g*)*(g*)* =1,
it does not always have property (C).

5. Now let @ = C, . We may treat this group as a linear space over
GF(p). Let u,, ..., u5 be a basis of this space and let A be the set of
elements of the form

N
Z(P_a'k)uk’ 1<a<p,
k=1

with

Narkiewicz ([1], P 1143) has asked whether this set has property (C).
If the answer were affirmative, then

N+p-2
uoy = (7 72 )+1.
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Obviously, this is the case for p = 2 and all N,

THEOREM 4. If p > 3, then A € (C) if and only ¢f N < 2.

Proof. Let p > 3 and N > 3. We shall determine a subset of A which
does not have property (C). Let v, = (p —1)uy +2ug, v3= uq, 3= (p —1)u, +
+2ug, v, = 4,. Obviously, »,,7,,v;,v,€ 4 and

(6) (P —1)v,+(p—1)v3+ v+, = 0.

If there existed d,, d,, dsg, @, such that 0 < d, <p—-1,0<d, <p—-1,
0<ds<1, 0<d,<1 and d,v,+d,v,+dgv5+dv,= 0, then we would
have

(P —2)u,s if dg =d, =1,
_ _Jp—1)u, ifdy=0,d, =1,
@ =) Ua +2%s =) | (0 2)u, if dy =1, d =0,
0 if da = d‘ = 0.

This can take place only for d, =d;, =p—1, dg=d, =1 or
d,= d;= dy= d,= 0, and hence equality (6) is minimal but certainly does
not satisfy (C).

If N = 2, then the set A can be written in the form

{w, = kv, 4+vy: k =0,1,...,p—1}, wWhere v, = u;—u,, v; = Us.
If for non-negative d,, d,,...,d,_,€Z
(7 dowo+ ... +d,_,w,_, =0,
then

-1 p—1
(8) D kd, =0 (mod p) and D'd, =0 (mod p).
k=0

k=0

If equality (7) does not satisfy (C), then by (8) we have

-1
Z d,=>2p.

k=0

We shall prove a lemma, a very special case of which we shall need,
but as it seems interesting, we state it in full generality.

Let # = (% ...,%,) and ¥ = (¥1,...,¥,) be elements of Z™. We
write e <y if o, <y,fori =1,...,m. Let L,,..., L, denote linear forms
on Z™ with integer coefficients. By D (@) we denote the Davenport constant
of the group @, e.g. the least integer r such that from any r elements of
@ one can extract a subsequence with unit product.

LeEMMA 3. If n,, ..., n, are positive integers and = (®,, ..., Ty) €Z™
is such that Xz, > D(C, ®...®0,), > (0,...,0), then there ewisis
zeZ™, (0,...,0)<z< @, for which L;(?) =0 (modwn,), ¢ =1,...,k.

9 — Colloquium Mathematicum XL VI.1
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Proof. Fort =1, ..., m we put

6 =(0,...,1,...,0), fi= (L1(31); '“)-Lk(ei))'

Let us consider the system f, ..., f,, (where each f; occurs x; times,
i=1,...,m) of elements of C,® ... ®C, . As this system has D,
>D(C,® ... D0,,) elements, there are #;, 0<1?; <& (1<i<mn), not
all equal to zero, such that ¢,f,+ ... +1,f,, = 0. Hence .

(Ll(tn ooy tm)y ---aLk(tu R tm)) =0

and this is the assertion of Lemma 3.
In our case we take k = 2, n, = n, = p—1, and

»-1 p-2
Ly (®oy ovy Bp_y) = Z'i:v,', L (%05 o0y Bp1) = Zwi'
i=0 i=0

As d, > 0 for some iy, and Jd;~1>2p—1 = D(C}), we can take
@ = (do, ...,y —1,...,d,_,) and apply Lemma 3. The existence of z € Z*
with (0, ...,0) <2<z and L,(2) = L,(2) = 0 (modp) implies that equal-
ity (7) is not minimal.
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