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Let G be a compact, simply connected, simple Lie group of dimension
N and rank R. To every integrable function on G it is possible to associate
its Fourier series

f®) =Y daxa* f(x),
)

where d) and x) are the dimension and the character of the irreducible
unitary representation A respectively. Write

Snf(x) =) daxa* f(z),
A€EnP
where nP is the dilation of a'Weyl invariant convex polyhedron P.

R.J. Stanton and P. Tomas have shown that the polyhedral partial sums
of Fourier series of functions in LP(G) may diverge almost everywhere (at
least for p < 2), but they converge at almost every point when we consider
central functions in L?(G), p > 2N /(N + R) (see [ST]). ,

On the other hand, it is known that there exist central functions in
L2N/(N+R)(G) with unbounded sequences of Fourier coefficients (see [GST)
and [GT2]). This of course suggests that the polyhedral partial sums of
central functions in L2N/(N+R)(G) may diverge.

The main result in this paper shows that at the critical index p =

2N/(N + R) it is possible to obtain positive results for central functions
in the Lorentz space L*N/(N+R)\1(3),

THEOREM. The polyhedral partial sums of central functions in the
Lorentz space L*N/(N+R).1(G) converge almost everywhere.

It may be interesting to notice that the index 2N/(N + R) is smaller
than the critical index for the mean summability (cf. [CGT)).

We shall also briefly consider the problem of divergence of Fourier se-
ries, and prove that, for groups of rank 2, there exist central functions in
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L2N/(N+2),20(3) whose polyhedral partial sums diverge on sets of positive
measure.

Notation. Let G be an N-dimensional compact connected simple Lie
group with rank R. Let T be a maximal torus of G, and let t and g be
the Lie algebras of T and G respectively. We choose a positive system ® in
the set of the roots of G, and let {ay,...,ar} be the associated system of
simple roots. We denote by W the Weyl group generated by the reflections
o; in the hyperplanes aj(H)=0 (5 = 1,...,R), and we consider W acting
both on t and on the dual t*. The Killing form B defines a positive definite
inner product (-,-) = —B(:,-) in t. For every A € it* there exists a unique
H) € t such that A(H) = i(H), H) for every H € t.

The vectors H; = 4miH,;[a;j(H,;) generate the lattice Ker(exp). The
weights of the representations of G are the elements of the set A = {\ € it* :
A(H) € 2miZ,VH € Ker(exp)}, and the fundamental weights are defined by
the relations A\;(Hy) = 27ib;i, j,k=1,...,R.

Theset E={A€A: A= 2;;1 m;Aj, mj € N} of dominant weights
can be naturally identified with the set of the equivalence classes of unitary
irreducible representations of G. A dominant weight A is non-singular if
m; > 0 for every j = 1,...,R. Moreover, if £ is a character of T, there

exists a unique A € 7t* such that
EoexpH = MH) = ¢i(H0H) ey,

For the character x) and the dimension d) of the representation corre-
sponding to the dominant weight A we have the Weyl formulas:

xx(exp H) = (A(exp H))™! Z det(c)e?+A)H) ¢ ¢,

ocEW
dA = H(A+ﬂ’a)/(ﬂaa)’
a€d
where
1
,B = 'é' Z «,

) a€d
Aexp H) = )~ det(a)e”PH) = (-2:)®! T sin(ia(H)/2)

ocEW a€d

(|®| denotes the cardinality of ®).

Let w be a non-singular dominant weight, and let P(w) be the convex
hull of the set {ow},ew. As r ranges over [1,+00), 7P(w) N T generates a,
countable family {P,} of distinct sets. The nth partial sums of the Fourier
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series of an integrable function f are defined by

Snf(@) =) daxa f(z)-

A€EP,

Proofs. For any integrable function g on T we define

Sng(t) = Z z ( fg(s)e-amm(loss) ds)ev(z\+ﬂ)(logt).
T

AEP, cEW

The following lemma relates S, to the abelian operator S,,.
LEMMA 1. S, f(z) = A~1(z)5.(Af)(2).

Proof. This is a direct consequence of Weyl’s character formula (see
e.g. [B] or [ST]). =
LEMMA 2. There ezists a finite family of hyperplanes {€;} such that,

given € > 0, the kernels {5,(z)} associated to the operators {S,} are uni-
formly bounded outside the set A = J,;{¢; + B(0,¢)}.

Proof. It has been shown in [GT1] that the functions {A(z)S,(z)} are
uniformly bounded. Hence the lemma follows from the definition of A. =

In order to make the paper self-contained, in the Appendix we shall
sketch a different and more direct proof of this lemma.

In the sequel it will be enough to deal with central functions with support
in a fixed neighbourhood of the origin which excludes the “antipodal” point.

LEMMA 3. Let f be in L*N/(N+R(G), and write Af = b+ g, with
b= AfXB(O,e)- Then:

(i) be LY(T);
(ii) g € L™(T) for some r > 1.

Proof. It has been proved in [GT2] that A~! is in L2N/(N-R)o(G),
Hence, by Holder’s inequality for Lorentz spaces,

[ 1f()a@)dz = [ |f(g)llA™Y(g)| dg
T G
< Wfllznyn+myallA™ l2n/ (N =Ry 000

and (i) follows.

The proof of (ii) is similar: notice that, away from the origin and the
antipodal point, A~! belongs to L*(G) for some s larger than 2N/(N — R).
See also [GR]. =
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Proof of the Theorem. Let f be in L*N/(N+R)1(G), Then, keep-
ing the notation of the previous lemmas,

Suf(z) = A (2)5,b(z) + A~ (z)Sng(z) .

Since g is in L"(T) for some r > 1, §,9(z) converges almost everywhere.
Now, b is supported in B(0,¢), and we would like to conclude that S,b(z)
converges to zero outside the support of . This is not necessarily true,
since Riemann’s Localization Principle fails for several variables. However,
the proof of this Principle and Lemma 2 show that $,b(z) is uniformly
bounded, and hence it converges to zero, outside A;.. Since the measure of
Az, can be made arbitrarily small with ¢, the Theorem follows. =

We are not able to prove that there exist central functions in
L*N/(N+R)(G) with polyhedral partial sums diverging on sets with posi-
tive measure. However, for groups of rank 2, we shall construct a central
function in L2N/(N+R),%0(G) with this property.

Let p € C*°(R? — {0}) be homogeneous of degree zero, identically 1 in
a small open cone around R;w and identically 0 outside the double of this
cone, and let p(z) & 3, p(A)xa(z). We claim that ¢ is in L2N/(N+R).o(3),
Indeed, the Dirac measure at 0 has Fourier expansion 6(z) = a: y dxa(z),
and its fractional integral of order |®|, I'®l§(z) = 37, |A + B|~®ldaxa(z), is
in the Lorentz space L2N/(N+R),» (), Clearly ¢ can be obtained by I1®!§
via a smooth bounded multiplier. (See e.g. [CW], [T] and [CT].)

Let n = n(k) be such that the dominant vertex of P, is kw, k integer.
We shall sketch a proof that (S, — §,_1)(A¢)(z) does not converge to zero
on some set with positive measure. Hence S,¢ cannot converge almost
everywhere.

(Sn—Sn_1)(Ap) is the sum of a trigonometric polynomial with spectrum
in the fundamental Weyl chamber and its reflections. Indeed,

(S = Sn-1)(Ap)(exp H)

2
= 3 det(o)e® D (p(ku + B) + 3 Y plkw + B - haj)ehes 7).

ocEW J=1h>0

(Of course we suppose p(u) = 0 if p is not a dominant weight.)
We shall prove that the main contribution to (S, — S,_;)(A¢)(exp H)
is
e®i(0H)/2

2
1
1 det( o) ko +O)H)
2 Z;VJ; et(o)e sin(ia;(0H)/2)’

so that (5, — S,_1)(A¢) does not converge to zero on some set with positive
measure.
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For fixed j and o write aj(c H) = —2mit, p(kw + B — haj) = ¥(h). One
easily checks that ¥(s) = 1if 0 < s < ¢en, ¥(s) = 0if s > nn, |[Y(s)| < ¢,
and [;° |(d/ds)y(s)|ds = O(1), fo |(d2/d32)¢(3)|d3 = O(n") We need
to estimate 3°, -, ¥(h) exp(2niht).

LEMMA 4. Let ¢ satisfy ¥(s) = 1 if0 < s < en, ¢(s) = 0 if s > 1,
and [*|(d/ds)y(s)|ds = O(1), [~ |(d?/ds?)y(s)|ds = O(n~1). Then for
0<i<l,

ie=i " O(|nt|™1)

kZ);)dJ(k) exp(2rikt) = 2sin(rD) sin(r?) + 0(1).
Proof. Write
f ¢(s)e2m'at ds
0
k+1 k+1
— z Q,b(k)ez"‘kt f e2mi(a=k)t go + Z f ('l’(s) _ ¢(k))621riat ds
k>0 k k>0 k
= —"it-mt—) Zq/;(k ) exp(2rikt)
i k>0
+ E f ( f 1/)(k+ u) du) 2ri(s+k)t gg |
k>0 0 ‘O
Hence
: — “te-iﬂ v 27is
'§)¢(k)exp(2mkt)— sin(r) ; fi/)(s)e tds
”te-iﬂ Tt s
= sn(r) Z(:) 6f ( f ¢(k+ u)du) 2mi(k+a)t gg

Since ¥(0) =1 and (d/ds)¥(0) = 0, by a repeated integration by parts we
have

Zmtet = - 2mwist

6f P(8)e ds = iy 5f 792 P(s)e ds
_ & O(|nt|™?)
T 2wt + t ’

and also
1,02 | .
> J ( f okt u) du)ez’"("ﬂ)t d ¢(s) ds = 0(1),
g du

k>0 0
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and the lemma follows. =

Appendix. At least for groups of rank 2 we wish to produce a direct
proof of Lemma 2.
Let p, be the dominant vertex of P,. We have to study the “singulari-

ties” of the kernel
S.(H)= Y e
AEP(‘J‘-{»ﬁ)ﬂA
for H in a fundamental domain.

LEMMA 2 bis. S, is uniformly bounded with respect to n away from the
hyperplanes a(H) =0, a € ®.

Proof. Asin Lemma 4, the idea is to substitute an integral for the sum
in the definition of S,,.

Let Q,s = Qoo + TA1 + s\y where r,s € Z, and let Qoo C it* be the
parallelogram with vertices 0, A1, A3, 8 = A1 + Az. Also let

Q" = U Qr.s .

{r,s:rX1+8X2€P(pua+0)}

Then
f erH) gy = Z e MH) f eH(H) gy
Qn AEP(un+B)NA Qoo
_ Csm(zAl(H)/2) s1n(zz\2(H)/2) (B2 Z AH)
M(H)Ao(H) AEP(un+B)NA
Hence
-1
E AMH) — O (Sm(“\l(ﬂ)ﬂ)SIH(ZAz(H)/2) ﬁ(H)/2) f en(H) gy
AEP(un+B)NA M(H)A:(H) Qn
Let k be the smallest integer such that Q,, C kP(w). Then
f erH) gy = f eHH) gy — f e*H) gy .
Q. kP(w) kP(w)-Qa
Since it* = R?, we order anticlockwise the roots of G to get a finite se-
quence {a{"},_; w|. Theinduced order of the vertices of P(w) is defined
by
T a
Wrpy = Wy — o (wra)

2la, a(r))a
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The difference kP(w) — @, can be decomposed as the union of a fixed
number of disjoint sets {B;}, where
c(k) '
B, = J14; - a9},

s=0

with ¢(k) =~ k as k — oo, and the A;’s are suitable subsets of it* (which do
not depend on k). Therefore

c(k)

f eH(H) dp = Zesa(j)(ﬁ) f eH(H) du
B,' s=0 A,'

and

" _ sin( Li(c(k) + 1)al) (H))
f e dp = Ej:c‘i 2 sin(ia(d)(H)) '

kP(UJ)—Q,‘
If T, C it* is the triangle of vertices 0, kw,, kw41, we have

k k—t
f erMH) gy = det(wy,wr41) fe“‘"“(H) f e*@r(H) dg dt
T, 0 0

Ny ekwrsi(H) _ 1 ekwr(H) _ 1
= det{wr,wr41) (wr+1(H)(wr+1 —w)(H)  we(H)(wr41 - “’r)(H))‘

where we let det(/\,p) = a1by —azby if A = ayA; +azA; and p = by Ay + b3 ).
Hence

W)
f eMH) g\ =Z f e MH) )
kP(w) r=1 T,
4l

— kw,(H) _ det(wy — wy_1,Wr41 — Wr)
er (e 1) (wr = wr—1)(H ) (wr41 — wr)(H)

Wi
= Z ekwr(H) det(wr — wr_1,Wr41 — wr)
r=1 (

Wr = W1 )(H)(Wr41 —wp )(H)
Of course wyw|4+1 = w1 and wp = wjw|; moreover we have used the equality

_det(A, p) det(u,v)  det(A,v)
MH)u(H) * p(H)v(H) — MH)v(H)

The above estimates together imply the lemma. =

We remark that the proof of Lemma 2 bis holds also for more general
polyhedra (for example when the weight w is singular).
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