COLLOQUIUM MATHEMATICUM

VOL. XLVI 1982 FASC. 1

ABSOLUTE CONVERGENCE OF FOURIER SERIES
ON FINITE-DIMENSIONAL GROUPS

BY

WALTER R. BLOOM (MURDOCH)

1. Introduction. In 1914 Bernstein [1] announced the result that
functions in Lip(a) with « > 1/2 have absolutely convergent Fourier
series, while for a < 1/2 there are functions in Lip(a) whose Fourier series
do not converge absolutely. This was generalized by Szész [9], [10] who
proved that if f € Lip (a; p), thenf € I, wherea > 1/p +1/r—1if1 < p < 2,
and a>1/r—1/2 if p > 2. Szész also gave examples to show that
the range of values of a could not be extended. Here the generalized Lip-
schitz space Lip(a; p) is defined by

Lip(a; p) = {f € L*(T): llvaf —fll, = O(lal), a — 0},

where 7,f: £ > f(r—a) and T denotes the circle group; the notation
Lip(a) is standard for Lip(a; oo), in which case the functions are taken
to be continuous.

Subsequently, the result was extended to other groups: by Titch-
marsh [11] to the real line (1 < p < 2), by Fine [6] to the Cantor group
(p = o0), by Vilenkin [12] to compact metric abelian groups with primary
character groups (p = oo), by Walker [13], [14] to finite-dimensional
compact metric abelian groups (p = oo), and by Onneweer [7], [8] to
the so-called bounded Vilenkin groups (1< p < o0). Titchmarsh and
Onneweer gave examples to show that their results were best possible.

Here we show that the statement of Bernstein’s theorem (and its
extension by Sz4sz) is valid for a wide class of metrizable locally compact
abelian groups, including finite-dimensional groups, the proof following
from a generalization of Jackson’s theorem (see [3] and [4]). This will be
the main result in Section 2. It will also be shown that the result is sharp
for the compact solenoidal groups X,. For other groups the question
remains open. '

Throughout G will denote an infinite locally compact metric abelian
group with translation invariant metric ¢ and character group I'y. We
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shall choose Haar measures 4, 6 for G, I';, respectively, so that Plancherel’s
theorem is valid, with 4 normalized in the usual way when @ is compact
(see [6], (31.1)). The real line R will be taken with its usual Euclidean
metric, as will the circle group T = R/Z (Z is the group of integers).
For the group 4, of a-adic integers, ¢ = (a,, a,, ...), a; = 2, consider
the basis (A4,,) of open neighbourhoods of the identity, given by

A, ={ved,:v, =0 for k < n}.
We give 4, the metric d defined by

ﬂn+l’ r—Yy EA'n\‘/1n+l7
d(‘”: y) = ﬂn r—y ¢A11
0’ T =Y,

where g, = A(A4,). It is easily verified that 4 is a translation invariant
metric on G compatible with the given topology.

The compact solenoid X, is defined as (R x 4,)/B, where B is the
infinite cyclic subgroup of R x 4, generated by (1, w), u = (1,0,0,...).
A (translation invariant) metric on X, will be specified by

d((z, v)+ B, B) = inf {max{ly|, d(w, 0)}: (y,w) e (», v)+B};

this is just the metric assigned in the usual way to quotients and finite
products. The character group of 2, can be identified with a subgroup
of the group Q of rational numbers, where x,; € I'r, corresponds to
llaga, ... a, € Q via

Ani((2, ©)+ B) = exp[2m'——£——— (2 —(vo+apvy+ ... +aqa,... a,,_,'v,,))]
AyQy ... Ay
(for details of the a-adic integers, X,, and their character groups see [6],
Sections 10, 25).

-Now consider a finite-dimensional group @ of topological dimension m.
Using the structure theorem ([6], Theorem (24.30)) for locally compact
abelian groups G ~ R™* x@,, where k¥ < m and @, has a compact open
subgroup K of dimension k. Furthermore, appealing to [14], Lemma 1,
K ~ (4° xZ*)/|H, where 4, X are the groups 4,, X, with @ = (2, 3, ...),
4% denotes the countable direct product of the groups 4, and H is a closed
0-dimensional subgroup of A® xZX*. A metric d will be defined for @G as
follows. Take a metric for 4% as for 4, with (4,) replaced by (V,), where

V;;= {ved®:v,=0,i,k<n},v= (v(o)’ 'v(l)y ...) and v = (Dios i1y +-- )y

a metric for 4 (in the definition of X) with respect to (4,), and in both
cases put g, = 2-", Thig gives a metric @' for K, which can be extended
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to G, by

17 _ d'(w’y)r w—yeK,
¢'(@y) = {1 otherwise,

and then to @ in the usual way.

Finally, the characteristic function of a set £ will be denoted by &,
and wherever C appears it denotes a positive constant, not necessarily
the same from line to line.

2. Bernstein’s theorem. We shall say that G has property P(V,,, k,, T,)
if there are a basis (V,) of symmetric open neighbourhoods of zero and
corresponding families (k,) and (Z',) of nonnegative continuous functions
and compact subsets of I, respectively, such that, for each positive
mteger n, snpp(k ) « ¥, (the open subgroup of G generated by V,),

k .(0) =1, supp(k,,) cT,, and
[my k,dh<0C,
rﬂ

where my_ i8 the integer-valued function on 7", defined by
my, (¥) = min{m € Z*: x emV,}.

With this definition we have the following analogue of Jackson’s
theorem (for a proof, see [4], Theorem 3).

THEOREM 1. Assume G satisfies property P(V,, k,, T,) and let

w(p;f; V,) = sup{llv.f —fll,: a € V,}.
Then

&, "‘f‘f"p Co(p; f; V)

Jor every f € L? (@) if p € [1, o) or for every bounded umformly continuous
Tifp=

It was shown in [3] that all metrizable locally compact abelian groups
satisfy property P(V,, k,, T,) for suitable families (V,), (k,), and (T,).
However, in many applications in approximation theory (for example,
Theorem 2 below) it is important that the T', do not increase too quickly
as the V, decrease. When ¢ = R, T or is 0-dimensional, or G is a group
formed from these by taking quotients and finite products, families (V,),
(%,), and (T,) can be computed explicitly (see [4]), and the relation be-
tween V, and T, seems to be optimal.

From Theorem 1 we can deduce properties of the Fourier transforms
of functions in Lip(a; p) (defined as in Section 1 with |a| replaced by
d(a, 0); when p = oo, the functions are taken to be continuous). A growth
condition needs to be placed on the families (V,), (T,), here given in
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terms of the radius 6(V,) = sup{d(a,0):a€cV,} of V, and the Haar
measure of T,.

THEOREM 2. Suppose G satisfies property P(V,, k,, T,), where

D8V 0(Tpa\T,)" < 00 for e>¢'.
n=1
Then, for 1 < p <2, Lip(a;p) < L' (Iy), wherea > 1/p+1/r—1>0
(with the convention that co™! = 0).
If, in addition, @ is compact, then Lip(a; p) < U"(Iy) for p > 2, where
a>1/r—1/2.
Proof. First consider 1 < p < 2. We can use Theorem 1 and the
Hausdorff-Young inequality to obtain for f € Lip(a; p)

lenf —flly < CO(V,)%,

where p’ denotes the index conjugate to p (that is, p’ = p/(p —1) for

p #1, and 1’ = ). Provided p > 1 we can use the fact that supp(k,)
< T, to write

[ 1fae<cs(v,y>
Tpi1\Tp

and, by Holder’s inequality (using the assumption that 1/p+1/r—1> 0,
that is r < p’'),

[ ifrao<osvar( [ ao) T = Ca(VTH(TL N
T”+1\T‘n Tn+1\Tn
This inequality continues to hold when p =1 and r < co. Hence

Jifrae=>" [ \frae+ [ifrae

T'q n=1Tp 41\ Ty

<0 Y (V)" 0(Tur T + [If[d0 < oo
n=1 Tl

provided ar > 1—r7r/p’, that is a > 1/p+1/r—1. In the case p =1 and
r = oo the theorem just states that functions in Llp(a 1) c¢ L'(@) have
bounded Fourier transforms; this is well known.
When p > 2 and G is. compact we follow the above method of proof,
using the property that ||k, *f —flla < [k, *f — fil,. The proof is completed.
Taking G =T, V, = {€™: |v| <27}, and T, = {—2", —2"+1, ...
.y 2" —1, 2"} in Theorem 2 we obtain the theorems of Bernstein and Sz4sz.
For@ =R,V, =(-2"",27"),and T, = [ —2", 2"] we obtain Titchmarsh’s
theorem. In both cases the family (%, ) is given in [3]. To extend this result
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to all finite-dimensional locally compact metric abelian groups we require
the following lemma.

LEMMA 1. Let G be a locally compact metric abelian group and let H be
any compact subgroup of G. Suppose that Lip(a;p) = L' (Iy) for some
choice of a, p, and r. Then the corresponding assertion holds for G |H.

Proof. Let f e Lipgg(a; p) and put f' = fon, where n: G > G/H
is the natural homomorphism. Then, appealing to [6], (28.54), for a € @
and p < o©

”taf’ —flllz = f ITa(fO J") _fonlpd}‘G = f Itn(a)f_flple/H

G G/H
< Cdgg(n(a), 0)® < Cdg(a, 0)°;

thus f’ € Lip(a; p) and, by assumption, f’ € L"(I}).

Now f’ is constant on cosets of H, so that supp(f’) = A(Iy, H) (the
annihilator of H in I'). Consequently, f, being the restriction of f’ to
A(Ig, H), belongs to L' (I'gy) (here we identify Iy, with A(Ig, H)).

The case p = oo is dealt with similarly.

We are now in a position to give a version of Theorem 2 for G a
finite-dimensional locally compact metric abelian group. A metric d is
assigned to G as in Section 1; we make use of the notation introduced
there.

THEOREM 3. Let @ be a finite-dimensional locally compact metric abelian
group with topological dimension m. Then, for L < p < 2, Lip(a;p)” < L™ (Iy),
where a > m(1/p+1/r—1)=0.

If, in addition, @ is compact, then Lip(a; p)~ < I"(Iy) for p > 2, where
a>m(l/r—1/2).

Proof. It is straightforward to see that, for any discrete group D,
D XR™* x A4° x 2% gatisfies property P(V,, k,, T,) with

Vo = {0} x(—27", 277 E XV X VL,
where V, was given in Section 1,

Vo = [ns((—27, 27%) x4,
and
T, = Ip X[ 2%, 2" T"* XA (T oo Vo) X {tnazt 1 < 2% nlE
Here we identify the character group of D X R™ % x A* xX* with
I'p XR™ ¥ XTI, xT';; for details see [3] and [4]. Furthermore,
8(V,) =27,  O(T,) = 20"+ 0m=B (L 1)1 ]2+ n! 1),
and

D (V) (T, \T,)" < 0o for &> me'.

n=1
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With minor changes to the proof of Theorem 2 we infer that Theo-
rem 3 holds for groups of the form D xR™* x A® xX*. Now appeal to
Lemma 1 to extend the result to all groups

(DXR™ ¥ xA° xZ*)[H' =~ D xR™* x ((4° xZ*)[H),

where H' = {0} xH and H is a closed 0-dimensional subgroup of 4% x X*,

Let G be an arbitrary finite-dimensional locally compact metric
abelian group. We know that @ ~ R™* x@,, where k¥ < m and G, con-
tains a compact open subgroup of the form K = (4° xX*)/H. We have
already shown that Theorem 3 holds for @ = G,/K xR™ * x K, since
Go/K is discrete, and so it remains only to show that G and G' have the
same Lip(a; p)-functions and that L™ (Iy) = L' (Ig).

The first assertion follows from the fact that @ and G are isometric,
locally isomorphic, and have the same Haar measure. For the second
notice that

FG: ng—kXI‘Go a'nd FG' ng_kXA(FGO’K)X(FGO/A(FGD,K))-

Since K is compact and open in G, we infer that A (I'g,y K) i8 compact
and open in I, and I'g [A(Ig,, K) is discrete. Hence I'y and Iy have
the same Haar measure, from which the result follows.

For p= oo and r= 1, Theorem 3 is given in [14], Theorem 1. How-
ever, it should be noted that the metric assigned there is smaller than
that given above; indeed, in defining the metric for 4, Walker takes
B, = e ™D and for 4%, g, = ¢~ ™+*Y" (in our notation). It is also
easy to see that, in the case @ = X, Theorem 3 holds when the metric on
X, is defined with g, = 2~

We now show that the range of values of a cannot be extended in
Theorem 3 for the a-adic solenoid X, ; and, in fact, any strictly decreasing
sequence (f,) of positive numbers will serve in the definition of the metric
for 4,. First, since the character group of Z, contains a copy of Z, the
duality theory for locally compact abelian groups gives the existence of
a closed subgroup H of X, such that Z,/H ~ T. Furthermore, it is straight-
forward to check that H ~ A, and that the metric given for X,/4, agrees
with that for 7. Now apply Lemma 1 and the classical results of Bernstein
and Sz4sz to obtain the existence of f € Lip(a; p) with f ¢ I"(I';,), where
1<p<2 and a =1/p+1/r—1 (respectively, p > 2 and a =1/r—1/2).

Finally, it is clear that Theorem 3 is sharp for @ 0-dimensional.

The author thanks the referee for several helpful suggestions in the
preparation of this paper.
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