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A SIMPLE PROOF OF THE CHUI-SMITH THEOREM
ON LANDAU’S PROBLEM

BY

MASAE SATO axp RYOTARO SATO (OKAYAMA)

The purpose of this paper is to give a simple proof of the Chui-Smith
theorem [1] on Landau’s problem for bounded intervals.

To formulate the theorem, we will assume that f and f’ are contin-
uous on the unit interval I = [0, 1] and for every « € I we have

[ 1 at =§ @) —f0).

Recall that this last requirement on f is equivalent to the absolute
continuity of f' (cf. [2], Chapter 5); hence we do not assume that f”(t)
exists for all t € I. We define

Iflly = ess sup If@®1.

Now we are in a position to state the theorem.
THEOREM 1 (Chui-Smith). Let ||fl; <1 and |f’|; < A. Then

, (4+4)2 if 0<A<4,
Il < {2;/Z if A> 4.

Moreover, these inequalities are best possible.

Before proving the theorem, we should like to note that the following
proof was inspired by Schoenberg [3].

Proof. Chui and Smith [1] have shown that an extremizing function
fo i8 given by

A A
folt) = ——2—t’+(2+—2-)t—-1 ifo<A<4



120 M. SATO AND R. SATO

and
2
_i(t_i_) 1 for 0<t<—
2 VA VA
Jo(t) = 9 if A>4.
1 for t>—:
VA

Clearly, f, satisfies lIfoll; = 1, lify Il; = 4, lifolz= (44 4)/2 if 0 < 4 <4,

and ||fyl; = 2VA if A > 4.

Now, let ||Ifil; <1 and |f”||; < A. Since f’ is continuous (and, if neces-
sary, taking —f instead of f), there exists ¢, € I such that f’'(¢,) = |If'l|;-
Then, for any « and y with 0 < x < {, < y < 1, taking the difference of the
Taylor’s formulas

v
F@) —f(te) = (9—1)f )+ [ (y—0)f" (t)at
bo
and
f@) —f(te) = @—to)f (t) + [ (@—0)f"(t)dt,
b

we have

v g
f@) —f@) = @—a)f (t)+ [ (y—0f"(®)dt— [ (t—a)f" (#)dt.
to x

Similarly, since
fi = —A on [0,a), where a = min{1,2/V 4]},
we have

v )
Foly —to) +folte—2) —2£o(0) = (y—)fs(O)—4 [ [ (y—)dt+ [ (t—a)ai]
) z '

if y—t, and t,—« are in [0, a]. On the other hand, since f, is concave
and fo(a)—fo(0) = 2 by its definition, it follows that for some z and y
with 0<2s <, <y<1l and y—2 = a we have

Jo(y—1o) + folto— @) —2f4(0) > 2.

By the way, note that this inequality is strict if 0 < #, < 1. Hence it
may be immediately proved that the extremizing functions are essentially
unique; see the argument below. For bounded intervals, this result is
new.
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Since f(y) —f(2) < 2, we obtain

14 to
(y—a)f'(t)+ [ (y—0f"Wdt— [ (t—a)f (Hdt<2
) z

] t
<@-af(0)—A[ [ (y—nat+ f°<t—w)dt]
ty z

or

y to
V=)' ) —f (1< — A [ w—vdt+ [ (t—2)dt] -
[P z

v )
—[f w—orwa— [ ¢—a5@a].
1 z

But since ||f”|l; < 4, we get
y fo
| [ w—orma— [ ¢—a)f" ®)a
% z
[ 4 ¢
<| [ w—nrma| +| [ t—of"wa
o z
gA[f(y—t)dt+ jo(t—w)dt];
[ z

thus (y —a)[f’'(t,) —f,(0)]1 < 0, and since y # =,
If'lr = £’ (te) < £o(0) = ifellr-

This completes the proof.

The following theorem is an easy extension of Theorem 1 to vector-
valued functions f on the interval I:

THEOREM 2. Let (B, |'|) be an arbitrary Banach space and f a B-valued
Sfunction defined on the interval I = [0,1]. Assume that |f(t)] <1 for all
tel, that

J'(t) = lim

8t

f&—f@)
s§—1t

exists for every t € I, and that there exists a constant A > 0 such that
IffO-reE<Aig—s (¢sel).

Then
o JA+A)2  if 0< ALY,
'V'b<{2/2 . if A>4.
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Proof. Since f’ is continuous, choose ?, € I, and then, by the Hahn-
Banach theorem, z* in B* (the dual space of B) such that

Ifllr = If' (%)l = <f' (%), @*> and |&*] =1.
Then it is easily seen that the function A(t) = {(f(t), #*) defined on

the interval I is a scalar-valued function satisfying [|h; < 1 and [|A”|; < 4.
Hence Theorem 1 completes the proof.
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