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0. Introduction. In their monograph on Borel structures, Bhaskara
Rao and Rao (1981) posed the problem (P4) of whether every Blackwell
space is strongly Blackwell. We answer this question in the affirmative for a
particular class of Blackwell spaces, namely those Borel-dense (i.e. with
totally imperfect complement) in some standard space; in particular, we
prove that the constructions given in Orkin (1972) and Section 9 of Bhaskara
Rao and Rao (1981) both produce exactly these spaces. Additionally, they are
characterised as “Borel-dense of order 2”, as defined below.

For other results on Blackwell snaces. the reader is referred to the works
of Maitra (1970), Sarbadhikari (1973) and Ramachandran (1975); the latter
gives certain relations with foundational probability.

1. Preliminaries. We work exclusively with separable spaces, i.e.
measurable spaces (X, #) whose o-algebra # is countably generated (c.g.)
and separates points of X. Often, the notation of a o-algebra is suppressed:
the space is called X only, and when needed, its measurable structure is
indicated by # = #(X). If ¥ is a sub-c-algebra of #(X), and A < X, then
we use the notations:

B(A)={BNnA: Be#(X)} and €(4)={CnA: Ce¥}.

A separable space (S, #) is standard if there is a complete separable metric
topology on S for which # is the corresponding Borel structure. If ¢ and 2
are c.g. sub-c-algebras of #(S), then say that % is proper in 2 when:

1) $ <« 2, and

2) there are uncountably many atoms of % that are not atoms of (i.e. aré¢
“split” by) 2.

A separable space X is a Blackwell space if whenever 4 is a c.g. sub-o-
algebra of #(X) that separates points, then 4 = #(X). A separable X is
strongly Blackwell if whenever ¥ — % are c.g. sub-c-algebras of #(X) with
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the same atoms, then 7 = 7. If X is a subset of a standard space S, then X
is (*)-Blackwell in S if whenever % is a c.g. sub-g-algebra of #(S) that is
proper in #(S), then there is some atom C of ¥ such that C n X contains at
least two distinct points (i.e. 4 does not separate points of X). A subset X is
strongly (*)-Blackwell in S if whenever ¢ and & are c.g. sub-g-algebras of
2 (S) with ¢ proper in &, then there is some atom C of ¥ and two distinct
points in C n X that are separated by %.

It is not hard to see that the following lattice of implications obtains:

(X strongly (™ ) - Blackwell in S) = ( X strongly Blackwell )

ll

(X (*)-Blackwell in S) === ( X Blockwell)

Cf. Bhaskara Rao and Rao (1981) Chapter 2, Sections 8 and 9, esp.
Proposition 9.

If S is any set and se S, then by a 1-slice of S xS over the point s we
mean a set of the form {s}] xS or § x{s}; if s is not specified, then we refer
simply to a 1-slice of S xS. If B = S x §, then by a 1-section of B we mean the
intersection of B with a 1-slice of S xS; if C is a 1-slice of S xS over the
point s, then BN C is a l-section of B over the point s. A l-section is
naturally identified with its one-one projection on one of the S factors. A
subset B of S xS is symmetric if (s, t)e B implies (t, s)e B.

Let S be a standard space; a subset X of S is Borel-dense of order 1 in S
(or simply Borel-dense in S) if S\ X contains no uncountable members of
#(S), or what is equivalent, no uncountable analytic sets. Also, X is Borel-
dense of order 2 in S if whenever Be #(S xS) is a subset of (S xS)\(X x X),
then B is contained in a countable union of 1-slices of S xS over points in
S\ X. It is not hard to see that Borel-density of order 2 implies that of order
1. A more complete study of Borel densities of order n is (Shortt (1984)).

Example 1. A conventional argument using transfinite induction
establishes the existence of a Borel-dense subset X of the real numbers R
such that X x X does not meet the line y = —x in the plane R%. Thus X is
Borel-dense of order 1, but not of order 2.

LEMMA 1. Let S be a standard space; if X = S is (*)-Blackwell in S, then
X is Borel-dense (of order 1) in S.

Proof. If B<=S\X is an uncountable member of #(S), then there is
an isomorphism j of B onto B x B; let fy,: B— B be the map j followed by
projection onto the first factor of B x B. Define f: S - § by

_JJo(s) for seB,
J= {s for seS\B



BLACKWELL SPACES 37

and put 6 =2, ={f"'(A): Ac#(S)}. Then % is a c.g. o-algebra proper in
#(S) and separating points of X. The Ilemma follows by
contraposition. Q.E.D.

It is the purpose of our main theorem below to bring attention to the
fact that the notions of strongly (*)-Blackwell, (*)-Blackwell, and second-
order Borel-density coincide for subsets X of a standard space S; moreover,
such subsets X are precisely those Blackwell spaces Borel-dense in S. Thus
the notions of Blackwell space and strongly Blackwell space coincide for
Borel-dense sets. Before proceeding, we require the use of four more lemmas.

LemMMA 2. Let E and F be analytic spaces and let A be an analytic
subset of ExF. If A(y) = (xeE: (x, yye A} denotes the 1-section of A over
the point y, then {yeF: A(y) is uncountable} is an analytic subset of F.

Proof. This theorem is originally due to Mazurkiewicz and Sierpinski
(1924) and has been generalised by Hoffmann-Jgrgensen (1970), 111.6.1.

LEMMA 3. Let A be a standard subset of the product E x F of analytic
spaces E and F. If the 1-sections A(x) = {yeF: (x, y)e A} are countable for
all x in E, then there exist standard sets B, c E (n =1, 2, ...), and measurable
mappings f,: B,— F such that:

1) f,(x) # fm(x) for all x in B,nB,, and n # m,
and

2) A= G G(f,), where G(f,) is the graph of f,.
n=1
Proof. This theorem is essentially due to Lusin (1930) p. 243; a proof
is to be found in Hoffmann-Jgrgensen (1970), I11.6.7.

Let E and F be separable spaces and let S be an uncountable standard
subset of E x F. Given x4 in E and y, in F, define the 1-sections

Sy (x0) = {yeF: (xo, y)eS},
S1(yo) = IxeE: (x, yo)€S).

LemmA 4. Suppose that for each xe E and ye F, one has S, (x) and S,(y)
countable; then there is an uncountable standard subset S, of E and a one-one
measurable function f: S, — F whose graph G(f) is contained in S.

Proof. Using Lemma 3, we find (for n=1, 2, ...) standard subsets
B, c E and measurable mappings f,: B,— F so that S = |J G(J,); select n
n=1

so that G(f,) is uncountable. Notice that since g,: B, — S defined by g,(x)
= (x, f,(x)) is one-one and measurable, its range G(f,) belongs to .#(S) and
so is standard.

Apply Lemma 3 once more, this time to the set G(f,), using the fact that
its “horizontal” sections are countable. There are, for m = 1, 2, ..., standard
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subsets C,, c F and measurable mappings g,: C,— E so that G(f)
= G G (gm); select m so that G(g,) is uncountable.

m=1

Since each “vertical” section of G(f,), hence of G(g,) is a singleton,
9dm: Cm— B, is one-one and so bimeasurable. We may put S, = g,(C,) and
f=g.'onS,: QED.

The same argument shows that S is the countable union of such graphs.

Lemma 5. Let X be a subset of a standard space S such that X is Borel-
dense of order 1 but not of order 2 in S; then there is a measurable
automorphism g of S onto itself such that

a) gog is the identity map on S, and

b) the set T = {(s, g(s)): g(s) # s} is uncountable and does not meet X x X.

Proof. If X is not Borel-dense of order 2 in S, then there is some
Be #(S xS) with B = (S xS)\(X x X) but such that B is not contained in a
countable union of 1l-slices of S§ xS. B may be chosen symmetric and,
assuming X is order-one dense in S, such that B does not meet the diagonal
4 of S xS: in any case via projection onto one co-ordinate, B n 4 would be
isomorphic with a standard subset of S\X and so would be at most
countably infinite.

Consider now the 1-sections of B: over points of X, these are standard
subsets of S\ X and so, by the Borel-density of X, are countable. The set of
all points in S for which these 1-sections are uncountable is, by Lemma 2, an
analytic subset of S\ X and so is countable. Subtract from B the 1-slices of
S xS, in each co-ordinate, over the points in this countable set. What
remains of B is a subset B, of (S xS)\(X x X) such that:

(i) B, is symmetric;

(i) Boe #(S x93);

(iii) Bon4 = 0;

(iv) each 1-section of B, is countable;

(v) B, is uncountable.

Using the isomorphism theorem for standard (or “absolute™) Borel
spaces, we consider S as a Borel subset of the real line with its usual order
and metric structure. Define

B_ ={(s,0)eBy: s>t}, B, =1\, 1)eBy: s<t},
disjoint, uncountable standard sets with B, =B_ UB,.
By Lemma 4, there are uncountable standard subsets D and R of S and

an isomorphism h of D onto R whose graph H is a subset of B_: then h(s)
< s for all s in D, and there is some ¢ > 0 such that

D(e) = seD: h(s) <s—¢&)
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is uncountable. Then there is some open interval N of length ¢ such that
Do = NN D(e) is uncountable. Whenever s and t are elements of Dy, then
h(S) <t:. SO Donh(Do) = 0.

Define g: S— § by the rule

h(s) if seD,,
g(s) =< h™1(s) if seh(Dy),
s otherwise.

Then g is an automorphism of S such that gog is the identity map. Also, T
= {(s, g(s): g(s) # s} is an uncountable subset of B, and so_does not meet
XxX. QED.

The construction bears comparison with Corollary 2 of Shortt (1984).

2. The Principal Result.

THEOREM. Let X be a subset of a standard space S; then the following
statements are equivalent:

1) X is Borel-dense of order 2 in S,

2) X is strongly (*)-Blackwell in S,

3) X is (*)-Blackwell in S,

4) X is a Blackwell space and is Borel-dense in S.

Proof. 1) implies 2). Assume that ¢ and & are c.g. sub-c-algebras of
#(S) with % proper in . Let f and g be Marczewski functions for ¥ and
2, respectively, and consider the set

T=/{(s,)eSxS: g(s) # g(r) and f(s) = f(1)}.

T is a member of #(S x S) which, since % is proper in 2, is not contained in
a countable union of 1-slices of S xS. If X is second-order Borel-dense in S,
then X x X must intersect T; thus X is strongly (*)-Blackwell in S.

2) implies 3). Trivial

3) implies 1). Assume X is (*)-Blackwell in S; then by Lemma 1, X is
Borel-dense (of order 1) in S. If, however, X is not second-order Borel-dense
in S, then by Lemma 5, there is a measurable automorphism g: S — S such
that:

a) gog is the identity map on S;

b) the set T = {(s, g(s)): g(s) # s} is uncountable and does not meet
X xX.

Since § is isomorphic with some Borel subset of the real line, it makes
sense to speak of a linear ordering < on § that respects (and generates) the
Borel structure #(S). Having fixed such an ordering, we now define f: S - §



40 R. M. SHORTT

by f(s) =s A g(s), the minimum of s and g(s). So
T={(s1:s5#t,g(s) =t}
=18, t): s#t,sAng@s)=t Ag()}
=6 0:s#1, () =f()}

is an uncountable member of #(S xS) not meeting X x X.
Consider #, = |f~'(B): Be #(S)}; the atoms of 2, are given by

{t} lf t =g(t)’
f“(r)={@ if t >g(),
g} ift<g(),

so that #, is c.g. and proper in #(S), and, since X x X does not meet T,
#,(X) is separable. Therefore X is not (*)-Blackwell in S.
3) implies 4). Immediate from Lemma 1.

~4) implies 3). Suppose that % is a c.g. sub-o-algebra of #(S) such that
% (X) is separable. Let f be a Marczewski function for €; if X is a Blackwell
space, then ¢ (X) = #(X), and f is an isomorphism when restricted to X.
Thus f is an isomorphism on some member S, of #(S) containing X. If X is
Borel-dense in S, then S\S, is countable. This means that no c.g. sub-o-
algebra % of #(S) can be proper in #(S) and still separate points of X, i.e. X
is (*)-Blackwell in S. Q.E.D. '

CoROLLARY. A Borel-dense subset of a standard space is Blackwell if and
only if it is strongly Blackwell.

Remark. The following two statements are implied by Corollary 5
and Proposition 13, respectively, in Shortt (1984):

1) If X is Borel-dense and universally measurable in S, then X is a
strongly Blackwell space.

2) If X is a non-Borel (*)-Blackwell subset of S, then X is not
isomorphic with the product of any two uncountable spaces.

Remark. Returning to example 1, we see that the function g: R— R
guaranteed to exist in Lemma 5 may be taken to be g(s) = —s. Referring to
the proof that 3)=1) in the theorem, we find f(s) =s Ag(s) =5 A (—9)
= —|s|; then #, consists of those Borel sets of R symmetric about zero, a
c.g. o-algebra proper in #(R). Here #;(X) is separable, but cannot coincide
with #(X): were it so, f would be an isomorphism on X and therefore
on all but countably many points of R (by Borel-density), clearly a con-
tradiction. -

Remark. The (*)-Blackwell sets discussed above are easily seen to be
precisely those satisfying condition 2* in the paper of Orkin (1972). Our
theorem above shows that this actually coincides with the seemingly stronger
construction due to Ryll-Nardzewski and presented in Sarbadhikari (1973).
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