COLLOQUIUM MATHEMATICUM

VOL. XLV 1981 FASC. 2

ADJOINING CONJUGATING ELEMENTS TO FINITE GROUPS

BY

KENNETH KELLER HICKIN (NEW HAVEN, CONNECTICUT)

If ¢ is an isomorphism of subgroups A and B of a group @, then the
group K with presentation (@,t: t~'at = ¢(a) for all a € A) (the HNN
extension of G relative to ¢) is known to have many nice properties.
In particular, a normal form for elements of K is given by Britton’s lemma
(see [2], Chapter IV). One measure of this niceness is the way the conjugat-
ing element ¢ interacts with subgroups of @. For example:

(*) If H <@ intersects A and B trivially, then {H,t)nG = H.

If @ is finite, it is easy to obtain a finite group <@, t) which satisties
the relations of K, and one might ask whether any of the nice properties
of K can be carried over to such a finite group. Here* we will prove
such a theorem, our concern being to satisfy (*) in a finite group.

THEOREM 1. Suppose G is a finite group, A, B < G, and

(i) ¢: A > B is an isomorphism which extends to r e Aut (4, B)
with |r| = 2.

There exists a finite group (@, t) with |t| = 2 such that t induces ¢ on
A by conjugation and, for all H < G such that

(i) HN¢A, B) i8 z-invariant,
we have (H,1)NG@ = H.

Notice that condition (ii) is also necessary for the conclusion since
(4, B) is t-invariant.

For our main theorem, we will further restrict the subgroups 4 and B.

THEOREM 2. Suppose G is a finite group, A, B < G and

(i) |4] = |B] =2.

There exists a finite group {G,t) with |t| = 4 such that A' = B and,
Jor all H < @ such that AnNH = BNH = 1 and

(ii) either <A, H)NB =1 or {B, H)nA =1,
we have (H,t)NG@ = H.

* This research was partly supported by NSF Grant 3 MCS77-07731.
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This is probably an initial case of a result in which assumptions
(i) and (ii) are weakened or eliminated. These restrictions seem to arise
from our method of proof and not from any essential feature of the situation.

Bounds for the order of (@,?)> can be extracted from the proof,
but would be very large because permutational products are used.

The proofs can be motivated by viewing the HNN extension K as
a split extension by (?) of an iterated free amalgamated product P obtained
from copies G,, (n € Z) of G with amalgamations B, = 4, ,, (via ¢, i.e.,
a,,., = ¢(a), for all a € A) on which ¢ acts so that t~'g,t = g,,, for all
g €@ and n € Z (where g; € G; corresponds to g € G under a canonical map).
To obtain a group (@, t) in which ¢ has finite order n, we must replace
the infinitely iterated amalgam P by a finite cyclic chain of amalgams in
which B, = A, (via ¢). This reduces the problem of adjoining to G a “nice”
conjugating element ¢ so that (@, t) is finite to a problem of performing
“pice” amalgamations of finite groups, which can be done using permuta-
tional products. Assumption (i) of both theorems is needed in our proofs
to “close” the finite chain of amalgamations of @,, ..., G, atn = 20rn = 4.

Before proceeding with the details we will give our amalgamating
tool.

An amalgam

F H

A=
K

is the union of two groups ¥ and H, Y = FUH, which meet in a common
subgroup £ = FNH. An amalgam

F, H,
QIo = \/
E,
is a subamalgam of A if F, < F, Hy< H and F)nE = H,nE = E,.

Definition. If % is an amalgam and @ is a group generated by %,
then @ has the subamalgam property (s.p.) if Moy NA = A, for all subamal-
gams A, of A. In the above notation, this means that, in @, (Fy, HyyNF
=Fy and {Fy, HH>NH = H,.

SUBAMALGAM LEMMA ([1], p. 226). Suppose A is an amalgam of finite
groups. There exists a finite group G = (A) satisfying the s.p.

The proof of this lemma uses permutational products, but no further
use of permutational products will be made in this paper.

Suppose U is an amalgam. gp,(A) is the free amalgamated product
of A. If A, and A4, are groups generated by U, we write f: A, = A, if fis
a homomorphism from 4, to 4, and f(a) = a for all a € %.

We will need
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LEMMA 1. Suppose U 18 an amalgam.
(i) If A is any group generated by W, then there exists

f:gpe(A) > A.
(ii) If A, and A, are groups generated by A, f: A, z A, and A, has
the s.p., then A, also has the s8.p.
The first part is simply the universal mapping property of gp.(%),
while (ii) is checked routinely — any violation of the 8.p. in 4, is preserved
under f.

Proof of Theorem 1. Let G, be a copy of G. By hypothesis (i)
of the theorem, the subgroups {4, B) < @ and {4,, B,> < @, are isomor-
phic by an extension of the map a - ¢(a), (a € A) and b — ¢~'(b), (b € B),
i.e., the map which transposes A and B via ¢. So, we will arrange that
G and @G, intersect in this manner, i.e.,

G G,
€A = N
<A’ B> = <A17 B1>
is an amalgam where
1) a =¢(a), for allaeA and b = ¢~ 1(d), for all beB.

Now gp.(¥) has an automorphism v of order 2 such that z(g) = g,
for all g € G because this map and its inverse preserve relations (1). Let
P = (A) be a finite group satisfying the s.p. and let f: gp.(A) — P with
N =ker(f). Put

P, =gps(A)/NNN* = (A).

Thus, P, is finite, there exists f,: P, LY P, and hence P, has the
8.p. by Lemma 1, and P, has an automorphism, which we also call 7, such
that |z| = 2 and 7(g) = g, forall g €@.

We claim that <@, t) = P,{t), where |[t| = 2 and ¢ induces 7 on P,,.
is the desired group. Note that @, = &, so P, = (@, G,) < (G, t). From
relations (1) we have r(a) = t~'at = ¢(a) for all @ € A so that t does induce
¢ on A as required, and (4, B) = {4,, B,) is t-invariant.

Suppose H < @ and HN{A, B) is invariant under . We must check
that (H, t)nG = H, that is, since <H,t) = (H, H*> (t) is a split exten-
sion, we only need to check that
(2) (H,H»nG =H.

We have U = Hn{4,B) =H'Nn{4,B) because this group is
r-invariant. Hence

H H
N/
U

i8 a subamalgam of U and (2) follows by the s.p.
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Proof of Theorem 2. We need only to construct finite groups
K, = <@, t,)and K, = (G, t,>such that, for all H < @ with AnH = BNnH
=1, we have

(a) <4, HynB =1 implies {H, t,)NG = H,

(b) (B, HyNnA =1 implies {H,t,)NG = H.

Indeed, we can take {@,t) <~ K, xK, with g — (g, g) for all ge@
and ¢ — (1,, t,) to prove the theorem.

We will construct (@, ¢,> so that (a) is satisfied for some given H < G.
Theorem 2 is then proved using a diagonal embedding into a finite direct
product as above (with direct factors corresponding to various H < @).
Thus, assume <{4,H)>NB =1,

We again begin with a copy @, of G and form an amalgam

4,,H,) @
A =
A, =B
recalling that |4| = |B| = 2. Let M = (A) be a finite group satisfying
the s.p.
Next, form the amalgam

G, M
B= "
(Hyy Ay
and let N = {fB) be a finite group satisfying the s.p. Since
B, A
N
1
is a subamalgam of B, we have
(3) (B, 4>NM = A (in N),
and since
H, H
N
1
is a subamalgam of %, we have
(4) (H,, HYNG@ =H (in M),
and hence
(5) {(Hy, H)nA =1 (in M)

since HNA = 1.
Combining (3) and (b) gives

(6) <B17 A>n<H1’ H> =1 (m N)°



CONJUGATING ELEMENTS 207

Let N’ be a canonical copy of N. Since D = (B,, A) and D’
= (B;, A" are isomorphic by B, <+ A’ and A < B, we can form an
amalgam

N N
€= \/
D =D
in which B, = A’ and A = B, and obtain a finite group P = (&) satisfy-
ing the s.p. Since

(H,,H) <H,,H')
Y

is, by (6), a subamalgam of €, we have
(H,H,,H', H)NN = (H,H,) (in P)

and from (4) it follows that
(7 (H,H,,H',H,>nG = H (in P).

Our group P is a homomorphic image of the group @ with presentation

(@,6,,6",6;: B=4A,,B, — A", B’ = A}, B, — 4)

and @ has an automorphism 7 of order 4 which extends the canonical maps
(8) ¢G> > 56 >6
because all the relations in the above presentation of @ are preserved
by these maps. } 3

Put P =Q/U and P = Q/UnUnU"NT"; s0o P =<4, G, 7, @)
is finite and has an automorphism extending the maps (8), which we also
call =.

Let P (t) be a semidirect product where [t| = 4 and ¢ induces v on B.
Noize that relation (7) holds in P also, because the natural homomorphésm
f: P — P is the identity on GUG, UG UG; s0 any violation of (7) in P is
preserved by f. Hence, it is clear that in (@, t) = (P, ?) we have
(H,ty =<H,H,, H, H)> {t) and (7) implies (H, t)NG = H as desired.
Note that A* = A, = B because of (8) and the amalgamating relations
of @. This completes our proof.

The crucial requirement of this proof is to generate a finite group
N from the amalgam

G @

Al =B
in such a way that
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(B, AD>n{H,,Hy =1 in N. To do this using the subamalgam property,
we made assumption (ii). If we try to relax the requirement that 4 and
B have order 2, there is a further problem to guarantee that the subgroup
(B,, A) of N is symmetrically generated, so that the amalgam G of the
proof can be formed.
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