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IN RECURRENT AND RICCI-RECURRENT SPACES
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1. An n-dimensional (» > 2) Riemannian space is called recurrent [3],
if the curvature tensor satisfies the condition

(1) Ryijeg = ¢ Rpijre # 0

for some vector c¢;, where the comma indicates the covariant derivative.
Contracting (1) with g"’c we see that for a recurrent space the relation

(2) Rij, = o Ry;

holds.

Spaces whose Ricci-tensor R,; satisfies (2) for some vector c¢;, where
n > 2, are called Ricci-recurrent. We assume, moreover, that RB; # 0 +# ¢;.

Thus every recurrent space with R; # 0 is Ricci-recurrent.

Let a Riemannian space admit an infinitesimal projective transfor-
mation with respect to the vector field v'. Denote by . the Lie derivative
with respect to this field. Then we have [4]:

(3) Ll = 0 A+ 8, Ay,
(4) LR = 0] Aip— Ok Aij,
(5) ZR; = (1—n)4y;,
(6) 2P =0,

where I7j, are the Christoffel symbols, 4; is a gradient vector field, and
P";. denotes the projective curvature tensor, i. e.

1
(7) Py = RYy—

n—1

(0% Rij— 0} Ryy).
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If A; = 0, the infinitesimal projective transformation is an affine
one.

Infinitesimal projective transformations in recurrent and Ricei-
recurrent spaces, not necessarily of # 0 recurrent vector but with defi-
nite metric, have been studied by Prvanovitch [1].

For such recurrent and Ricci-recurrent spaces Prvanovitch proved:

(a) If a Ricci-recurrent (recurrent) space admits an infinitesimal
projection transformation, then it is an Einstein space or the vector field A;
satisfies the condition

A;R;R" + A;R;R" + }R; R %¢, = 0.

(b) If a compact Ricci-recurrent space, which i8 not an Einstein space,
admits an infinitesimal projective transformation such that Lc; = 0, then
this transformation is a motion.

In the present paper we shall investigate infinitesimal projective
transformations in recurrent and Ricci-recurrent spaces, whose defini-
tions have been given above.

Formulas

(8) LTy = 8 Ax+ 8 Ay, Aj = —}Ze

(Theorem 1) as well as Theorems 2-4 are proved without assuming the
definiteness of the metric. Further theorems are valid under the hypo-
thesis that the metric is positive definite.

2. LEMMA 1. If ¢; and T;; are numbers satisfying
(9) e,-Tm,-—l— Giji = 0,

then either all the e; are zero, or all the T are zero.

Proof. Suppose that one of the é’s, say e,, is non-zero. Then (9)
with ¢ = j = ¢q gives 2¢,T,,, = 0, and therefore T,,, = 0 for all m.

Putting ¢ = ¢ in (9) we now have ¢,T,,; = 0, and therefore T,; = 0
for all m and j.

LEMMA 2. If the recurrent vector of a Ricci-recurrent space is & gradient,
then the equation

(10) ' R.R); = }RR;
holds, where R = g"R;;.
Proof. It can be easily verified that, since ¢; is a gradient, (2) gives
Rijim—Rijpu = (Com—Cmy) Bij = 0,

whence using Ricci’s identity we obtain

(11) Ry R ym~+ R Ry = 0.
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By differentiating (11) covariantly and taking into consideration (2),
we find

Cx(Rrj Rliym+ Rir Rijtm) + Ry Rigm .+ Rir Rijpm i = 0.
This, because of (11), yields
(12) R%; Rynri o+ R Rymrip = 0.
Contracting (12) with ¢'* and making use of the relation
Rl = Ryy—Ry,,
which follows easily from Bianchi’s identity, we get
Rlj(Rupri—Rmiy) + R (B j—Rmjs) = 0.
But the last equation, in virtue of (2) and
(13) or Ry = {Re;,

which is a immediate consequence of (2), and the formula R7;, = }R;
(see [5], p. 19, equation (1.61)) is equivalent to

(14) ¢;(Rpm Ry —3RR,;) + ¢;( Ry RT;—3RR,,;) = 0.

Putting Ty = R R’;—3RR; we see that (14) can be written as
¢iTw;j+¢;Ty; = 0, and is therefore of the form (9).
Hence, since ¢; # 0, Lemma 1 gives T;; = 0, which proves our lemma.

LEMMA 3. If the recurremt vector of a Ricci-recurrent space admitlting
an infinitesimal projective transformation is a gradient, then the Ricci-
tensor satisfies the equation

(15) A 4Ry = A, R

Proof. Applying to (11) the Lie derivative and making use of (4)
and (5), we find

(1—n)A Rjp+AjmRu—A; R+ Ai mRij— Ay R+
+(1—n)A,; Ry = 0.

The contraction of the last equation with g7 gives

(1 - n)Ar,aRr?lm+Ar,1n er —Ar,erm +Ar,m Rr _Ar,lR-rm‘l“
+ (1 — 'n)A,-'er?lm = 0.

Whence, since 4;; is symmetric and, consequently, A,,R7;, = 0,
we obtain (15).
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LEMMA 4. If the scalar curvature of a Ricci-recurrent space admitting
infinitesimal projective transformation is # 0 then the vector field A;
satisfies the condition
(16) AT, =0.

Proof. M. Prvanovitch ([1], equations (2.11) and (2.12)) proved
that if the Ricci-recurrent space, whose recurrent vector is a gradient,
admits an infinitesimal projective transformation, then the following
equations hold:

(17) AT, R"Ry—RA,,R” = 0,
(18) RAT,—nA,,R” = 0.
Contracting (2) with ¢, we obtain R; = ¢;R, whence it follows that

¢; is a gradient. Hence, the equations (10) and (15) are satisfied.
It is easy to see that (10) gives

(19) R"R,, = }R*.

Substituting (19) into (17), we get }R’A’,—RA,,R™ = 0. This,
together with (18), yields (n—2)RA,,R™ = 0. But the last equation,
in virtue of (18), implies R’A’, = 0, which proves our lemma.

LEMMA 5. If the Ricci-recurremt space with R # 0 admits an infi-
nitesimal projective transformation, then its Ricci-tensor satisfies the
equation

(20) (Zec,)R; = —3A,R;.

Proof. Applying to (2) the Lie derivative and using (5), (3), and the
well-known formula

LTy, = (LTy), — Ty LI —Ty 2Ty,

we get
(21) (A—n)A;;—AiRy—24;R;—A; Ry = (Lo) Rij+ (1 —n)e Ay,

The contraction of (21) with ¢, in virtue of (16), yields
(22) R.‘?c, = —2.RA;—2A,-R:.1.

Contracting further this with R', and taking into consideration (10),
we obtain easily (20).

LEMMA 6. If the Ricci-recurrent space with R # 0 admits an infiné-
testmal projective transformation, then the wvector field A; satisfies the
Sfollowing equation:

(23) A, R'; = }RA;.
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Proof. Contracting (21) with ¢* and using (20), we obtain
(1—n)(ATjp—ec, A7;) = RA;.

Since A7, = A”,; +A,R7;, which easily follows from Ricci’s iden-
tity, the last but one equation, in view of (16), can be written as

(24‘) (l—n)(A,.Rf}—c,.A'_f) = RA;.
This, by contraction with R’, yields
(1—n)(A,R;R)—c¢"A,;R}) = RA; R,

or, because of (15),
(1—n)(4,R R, —c,R74;;) = RA; B
Making now use of (10) and (13), we find
}1—n)R(A,R'y—c, ATx) = RA,RY,.

But this together with (24) implies }R’4, = RA,R’,, which gives
(23). Our lemma is thus proved.

3. Substituting now (23) into (22), we have R%¢; = —3RA,;. But
this, when R # 0, gives )

(25) Lo = —34;.

Hence, we have the following

THEOREM 1. If the Ricci-recurrent space with R +# 0 admits an infini-
tesimal projective transformation, then this transformation satisfies (8).

‘'THEOREM 2. If the Ricci-recurrent space with R # 0 admits an infini-
tesimal projective transformation, then this transformation i8 an affine one

Proof. If A; = 0, then the equation #R;; = 0 follows immediately
from (5).

Suppose now #ZR;; = 0. Then, in virtue of (5), we have A4,; =0,
which, using the Ricci identity, gives

(?6) Aijk"—Ai,kf = —A,.Rfm, = 0.

Contracting (26) with g and taking into consideration (23), we obtain
3}RA, = 0. This, since R # 0, completes the proof.

THEOREM 3. If the Ricci-recurrent space with R # 0 admits an infi-
nitesimal projective transformation such that (ZLe;)x = 0, then this tran-
sformation is an affine one.

This result follows easily from (25) and Theorem 2.
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THEOREM 4. If a recurrent space with R # 0 admits an infinitesimal
projective transformation, then this transformation is always an affine one.

Proof. M. Prvanovitch ([1], equation (2.7), p. 220) proved that the
projective curvature tensor of a recurrent space, admitting an infinites-
imal projective transformation, satisfies the relation

(L) Pyjie = GuAoPligr— 24, Pyij— Ai Pup— Ay Py — A Pyigy.

Because of PI,; = Pl;,; = P;, = 0, the contraction of the last
equation with g* gives

(27) (.?c,)P.'ifk = (n—2)A,.Pf,-¢k.
Substituting (7) into (27) and contracting with ¢, we obtain
n (.S,Pc,) .Rrk —R.?Ck = ('n — 2) ('nA,.R'k——RAk) .

Making now use of (20), (23) and (25), we obtain easily (n+1)RA;
= 0, which proves our theorem.

4. Suppose now that the metric of the investigated space is positive
definite. Then, contracting (2) with R”, we get

(R7Ry); = 20,R" Ry,

whence, since R7R; + 0, it follows that ¢; is a gradient.

Taking into consideration (19), which now holds, it can be easily
verified that the scalar curvature is = 0. Therefore the equations (16),
(23) and (25) are satisfied.

Hence, we have

THEOREM 5. If the Ricci-recurrent space with positive definite metric
admits an infinitesimal projective transformation, then this tramsformation
satisfies (8).

Since the scalar curvature of a recurrent space with positive definite
metric cannot be zero, which is an immediate consequence of the relation
RY¥ Ry = R (see [2], equation (10)), Theorem 4 yields

THEOREM 6. If a recurrent space with positive definite metric admits
an tnfinitesimal projective transformation, then this transformation 1s
always an affine one.

Now, the following theorem will be proved

THEOREM 7. If a compact orientable Ricci-recurrent space with positive
definite metric admits an tnfinitesimal projective transformation, then this
transformation is a motion.

Proof. Applying to the inner product v»'c, the Laplace operator 4,
we obtain

4 ('vrcr) = gﬁ(vr,icr +'vrcr,i),f’
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which, since ¢; is a gradient, can be written in the form
A(v'e,) = gij ('vr,i er+ v Cir);-

Taking into account the well-known formula Za; = v'a;,+ ' ;a,,
we obtain in our case 4(v'¢,) = g7 (Z¢;);, or, in virtue of (25), 4(v'c,)
= —34°,.

But, since the metric is positive definite, equation (16) holds, and
therefore 4(v'¢,) = 0 everywhere in the space.

Making now use of Bochner’s theorem ([5], p. 30), we obtain "¢,
= const and ZLe; = (v'e,); = 0.

Hence, because of (25), this transformation is an affine one. But
it is known ([56], p. b8) that an infinitesimal affine transformation in
a compact orientable Riemannian space is always a motion. This remark
completes the proof of our theorem.

The following theorem is a consequence of Theorem 6:

THEOREM 8. If a compact orientable recurrent space with positive
definite metric admits an infinitesimal projective transformation, then this
transformation i8 a motion.
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