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1. By a pseudometric space (X, .&/) we mean a set X equipped with a
family of pseudometrics .of satisfying the condition

(1) For every a,, a,€ o/ there exists ae o/ with a > max(a,, a,).

Examples. 1. Every metric space (X, d) is a pseudometric space.

2. Let F be a locally convex space and let U(F) be a basis of absolutely
convex neighbourhoods of zero in F and Py denote the Minkowski func-
tional generated by U and o/ = {Py: Ue U(F)]. Then (F, <) is a psepdo-
metric space. "

Let (X, o) and (Y, #) be pseudometric spaces. A map f: (X, .%)

— (Y, %) is called a Lipschitz map iff for every be # there exists ae .o/ and a
constant K > 0 such that

b(f(x),f(y) <Ka(x,y) for all x,yeX.

Remark. The definition of Lipschitz maps between pseudometric
spaces given here is a slight modification of one introduced by Mankiewicz

([3)).
The aim of this note is to study the extension of Lipschitz maps with

values in a Fréchet space. Only the real case is considered, but the results
hold true in the complex case as well.

Definition. Let @ denote a class of pseudometric spaces. A pseudo-
metric space Y is said to be an EL(®)-space iff for every X e @ and for every
Lipschitz map f from a subset 4 of X into Y there exists a Lipschitz map
f* X > Y such that f|A=f

Let 9 be the class of all metric spaces and &, be the class of all
separable Fréchet spaces. The main results of this note are the following.

THeoreM 1.1. If E is a Fréchet EL(9)-space then E ®,F is an EL(W)-
space for every nuclear Fréchet space F.
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THEOREM 1.2. An infinite-dimensional Montel-Fréchet space F is an
EL( &,)-space if and only if F = s, where s denotes the Fréchet space of all
sequences of real numbers.

The proof of Theorem 1.1 is given in Section 2. Section 3 is devoted to
the proof of Theorem 1.2. In Section 4 we apply Theorems 1.1 and 1.2 to the
problem of extension of uniformly continuous maps between pseudometric
spaces.

2. Proof of Theorem 1.1. Given a metric space K and a Fréchet space E.
By C,(K, E) we denote the Fréchet space of all bounded uniformly con-
tinuous maps from K into E with the natural topology. By a theorem of
Isbell-Lindenstrauss ([2]), C,(K, R))e EL(M). The following lemma is an
immediaie consequence of Isbell-Lindenstrauss theorem.

Lemma 2.1. If E is a Fréchet EL(M)-space, then so is C,(K, E).

Proof. Consider E as a subspace of ]_[ | (S;) for some §;, where 1, (S))
denotes the Banach space of all bounded real functions on §; w:th the
supremum-norm. Since the existence of a Lipschitz projection from ]—[ 1. (S
j=1

onto E implies the existence of a Lipschitz projection from C,(K, [] !»(S;)
i=1

onto C,(K, E) and

Co(K, ] 1.(5)) = ﬁ C(K, 1 (5))
j=1 j=

it suffices to consider the case E = [_(S). But in this case, by the relation
C.(K, 1,(8)=C,(K xS, R") (S is considered as a metric space with the
discrete metric), the lemma follows from the Isbell-Lindenstrauss theorem. [

LEMMA 2.2. Let F be a nuclear Fréchet space. Then there exists an
inverse system {I5, 0} such that

(i) B =1 for every n;

(i) F = projlim {I}, 07};

(iii) 6., is nuclear for all neN;

(iv) Im@y, , is dense in Im@;, for every n;

(v) for every neN there exist linear continuous maps q,: I},
- C[0, 1], p,—y: C[0, 1] > 1l,_, such that 077} = p,_, q,.

Proof. Let U(F)= [U,) be a basis of absolutely convex neigh-
bourhoods of zero in F such that the canonical maps w),,: F,,, = F, are
nuclear, where F, denotes the completion of F/pu‘(O) with respect to the
pseudonorm py generated by U,. Since wy,, are nuclear there exist linear
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continuous maps a,;: Feey =1, by ' > F,, cpey: Fpey =1, and d,: 1,
— F, such that b,a,,, = w},, =d,c,+,. For every n take an embedding
i F,—»C[0,1] and a linear continuous map k,: C[0, 1] = [, such that
k,i, = c,. Put

Ivln =1, Ons1 =ayby,  qu=1lpby, Pp-y =a5-, dy_ 1 kp.
(1) is obvious.

To verify (ii) it is enough to observe that the diagram below commutes
and F = projlim {F,, o]}

41 1
F B ————
n+1 ln +

(21) "‘5'+'l , jafu

Py

(iii) follows from the fact that w"~! is nuclear and from the relation
:;i =a,,_1w:"b,,. .
(iv) Since Imw?!,, is dense in F,, by the commutability of (2.1) we infer
that Im@5,, is dense in Im@;,,,.

(V) Pr-19n=0ap-1dy_ 1 kyinby =0, 1d,_C,b, = an—lw:—lbn = 0::%

Lemma 23. Let F =projlim{F,. oy} and F" = projlim{F,, w,"}
where F, and F, are Fréchet spaces. Assume that for every n there exists a
linear continuous map j,. F, — F, satisfying the following conditions

(1) @y™jn = jmy for every n=m; |

(i) for every zeF, there exists yeF,_, such that j,_,y = w." %z for
n>2; '

(ili) for every n > 2, w" %(Kerj,) is dense in w?-3(Kerj,_,).
Then the map j = proj limj, is surjective.

Proof. For every n let g, be an invariant metric inducing the topology
of F,. Without loss of generality we can assume that

On(@Wht1 X, Dpi1Y) < Que1(x, )

for all x, yeF,,,. Let y={y,}eF"” with y,eF,. We shall construct by
induction a sequence of elements {x,} such that

(2.2 x,€F,,
(2.3) JnXn = Yn,
(2.4) Op-2(@ " 2x,, ©"-2x,_,)<1/2" for all n>2.

Select x, € F, such that j, x;, = w3 y; = y, and assume that x,,..., x, satisfy-
ing (2.2), (2.3) and (2.4) have been defined for some n. By (ii) there exists
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. +1 .
Zp+1 €Fpyy such that joiizpe; = @313 Yars = Yasy. SiNCE @h4; 24—

—x,eKerj, using (ii) twice one can take a point x,,,€cKerj,,, such that

-1 -1 -1 +1
On—1(DR32 Xps2, Wpi1Zps1—Wy " X,) < 1/2°77,

: +1 ;
Settlng Xp+1 =z,,+1+w:+2x,,+2 we have xn+lan+la Jn+1Xn+1 = Yn+1 and

n—1 n—1
Qn-—l(wn+l xn+la (0,, xn)
n—1

= Qn—l(w:;éxn+2’ w:-:%zn-l-l_wn xn) < 1/2"+l-
Thus the sequence |x,} satisfying (2.2), (2.3), (2.4) is constructed. Since for all
n>p+1
Q,(w,’,’x,,, wg-l Xn— l) < Qu—Z(w:_zxm w::%xn— l) < 1/2"’

we infer that wj x, —z, for all p. By the continuity of w},, and j, we have
Jjpz, =Y, for every p. Consequently z= {z,}eF and jz=y. O

Lemma 24. Let F =projlim{F,, o7} and n,: F - F, are canonical
maps, where F, are Fréchet spaces. If Imn, is dense in F,, then

E ®,F = projlim {E ®, F,, idy ®, v}
for every Fréchet space E.
Proof. Define a map 0: E ®, F — projlim {E ®,F,, id; ®, o} by

0 ) v;Qu=1{) v;@n,u;}.
j=1 . J=1

Since Immn, is dense in F, we infer that Im@ is dense in
projlim {E ®, F,, id; ®, wy}. Whence, the relation

sup IZ U*(Uj)“*(“j)l = Ssup IZ v*(vj)a*(ﬂn“j)l,
veeV 0 j=1 veeV0 ;=
uen,” 117)) U0
for all VeU(E) and UeU (F,) implies that 6 is isomorphic. O
Proof of Theorem 1.1. Let E be aAFréchet EL(M)-space and A be a
subset of a metric space X. By Lip(X, E ®, F) we denote the Fréchet space

of Lipschitz maps from X into E ®, F endowed with the topology generated
by all pseudonorms of the form

q(Ux—fy)
= q(fao) +sup ———
q.(f) = q(fao) #l: d(x, y)
where a, is an arbitrary fixed point in A and q is a continuous pseudonorm
on E®,F. By Lemmas 2.1 and 2.4 we have:

Lip(X, E ®, F) = projlim {Lip(X, E ®,1}), 67"
and
Lip(4, E ®, F) = proj lim [Lip(4, E &®,1}), §;™)
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where 0™ and 6™ are maps induced by id; ®,0™. Let j,: Lip(X, E ®,1})
- Lip(4, E ®, I‘) be the restriction map. Then j = projlimj, is the restric-
tion map from Lip(X, E ®, F) into Lip(4, E ®, F).

To finish the proof of Theorem 1.1 it suffices to show that j, satisfy the
conditions (i), (ii) and (iii) of Lemma 2.3.

(i) is obvious.

(i) In the notation of Lemma 2.2, let geLip(4, E ®,I},,) and §
= (id; ®.9,) 9. By Lemma 2.1 there exists feLip(X, E®,C[O0, 1]) such
that f]|A=g. Setting f=(id;®,p,—,)f we obtain an element
feLip(X, E®,I!_,) such that

jn—1f=(id£© Pn- 1)(]' A)=(1d; ® Aepn 1999
= (idg ®20n+l = n+l(g) :111(g)~

(ili) Let {e,} be the canonical basis of I' and ¢ > 0. By the compactness

of |07.,e) and by the relation Im@j,, = Im#@;,, it follows that there exists
a bounded sequence |x,! = I!,, such that

[16n,2x,—0n el <& for all k.

We define a linear continuous map h: I}, , - I}, , by

h({&) = 2 &exs
k=1

obviously

167+ 2h—0n 1l < .
Suppose that feKerj,.,;. Put g =(idg ®,h) f. Then geLip(X, E ®,1,,),
jn+zg =0 and

4.5+ 290341 1) = lllidg, ®. 05+ 2 h) f—(idg, ®, 0741) [
= ”(idsq ®c(0 2h—0, +1))f” < eq(f)

for every continuous pseudonorm g on E, where E, = E/q=1(0).

3. Proof of Theorem 1.2. Since the dual space of a reflexive Fréchet
space is bornological, similarly as in [4] we have

Lemma 3.1 ([4], p. 61). If ¥ is the class-of all pseudometric spaces and
FeEL(Y) is a reflexive Fréchet space, then for every Fréchet space E
containing F as a subspace of E, F is complemented in E.

LEMMA 3.2. Let F be a infinite-dimensional Montel-Fréchet space and let
U(F) = U, be a basis of absolutely convex neighbourhoods of zero in F. Let

I be the canonical embedding of F into E = n F,. Then I (F) is complemented

n=1

in E if and only if F is isomorphic to the space s.
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Proof. If F =~ s, then by Hahn-Banach Theorem I(F) is complemented
in E. '
Now let T be a linear continuous projection from E onto I(F). Let
G, = n U; <[] F:.
i>n

Since T is open, it follows that {T(G,)/m} is a basis of neighbourhoods of
zero in I(F) and for every n, T induces a linear continuous map 7, from

E/pg, (0) = H F; onto I(F)/pzg,(0) by the formula:

To({x1s--es Xu}) =1 T({X1,-. ., X, 0,...}).

Since I(F) is a Montel space, T(n U;) is a precompact neighbourhood of

zero in I(F)/prd ,(0). Hence dim [/ (F)/p ,(0) < oo for all n. This implies that
I(F)=s. O

Proof of Theorem 1.2. In notations of Lemma 3.2, let P be a
Lipschitz projection from E onto I(F). By Lemma 3.1 there exists a linear
continuous projection of E onto I(F). Thus by Lemma 3.2 F is isomorphic
to s.

The converse part of Theorem 1.2 is obvious. O

4. Some applications. In this section we will apply Theorems 1.1 and 1.2
to the problem of extension of uniformly continuous maps between pseudo-
metric spaces.

Definition. Let f be a uniformly continuous map from a metric space
X into a pseudometric space Y. We say that (X, f, Y) has the unlimited
uniform extension property iff for every metric space Z containing X iso-
metrically there exists a uniformly continuous map f* Z — Y such that f|X

=J.
Let us prove the following
THEOREM 4.1. Let (X, d) be a metric space, F be a nuclear Fréchet space

and f- X — F be a uniformly continuous map. Then (X, f, F) has the unlimited
uniform extension property if and only if

4.1) limsupt™'w,(f, ) <o for every n
where
4.2) w,(f, 1) = sup {P,(fx—fy): d(x, y) <t}

nd {P,} is a increasing sequence of pseudonorms inducing the topology of F.

Proof. The necessity of (4.1) follows from a theorem of Aronszajn and
Panitchpakdi (see [1], Theorem 2 p. 408).
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Let us assume that (4.1) holds for every n and Z is a metric space
containing X isometrically. By a theorem of Kuratowski and Wojdystawski
we can assume that Z is a normed space. Put

S
F,= F/P,,—I(O) and U,? = {X*EF:‘: [1x*| < l}.

By a theorem of Aronszajn and Panitchpakdi ([1]) the condition (4.1) implies
that for every n, there exists a uniformly continuous map f,: Z — [l (UY)
such that f,|X =»,f, where n,: F>F, o 1,(U?) is the canonical embed-
ding. From the uniform continuity of f, it follows that

limw,(f,, t) =0.

t—0

For every ne N, select an ¢, > 0 such that w,(f,, ¢,) < 1. By Theorem 1 [1],
the condition (4.1) implies the existence of a nondecreasing subadditive
function ¢,: [0, o0) = [0, o) such that

lim ¢, () = 0 = ¢,(0)
-0

and

0p(fas ) < @,(t) for all te[0, o).
For every x, yeZ put
4.3) dy(x, y) = @n(ming,, ||x—yll) < @a(ed)-

Since ¢, is subadditive, d, is a-pseudometric on Z. Obviously d, is uniformly
continuous.

Define a metric ¢ on Z by

Q(x’ y) = ”x—yll+ z dn(x’ y)/ann where Mn = (P,,(ﬁ,.)-
n=1

Obviously ¢ is uniformly equivalent to the norm || - || of Z. Thus to complete
the proof of Theorem 4.1, by Theorem 1.1 remains to check that f: (X, o)
— F is a Lipschitz map.

Let neN, x, ye X. If |[x—y|| =t > ¢, then we can take x,, x,,..., X, €Z
such that x, = x, x, =y and that:

llx—yll

“xi—xi_1”= Ss,, fOl’ i=1,...,k

where k = [t/e,]+1. Then we get
k
P,(fx—fN < Y Palfax—foXi-1) S k < tfeg+1 < 2||x—yll/e,.
i=1

If llx—yll <e,, then
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P,(fx—=fy) < w,(f, lIx—=yl) < @a(llx—yll)
= @,(mine,, d,(x, y))=d,(x, y) < 2"M,0(x, y).

Thus f: (X, ) = F is a Lipschitz map and the proof of Theorem 4.1 is
finished by Theorem 1.1. O

THEOREM 4.2. Let F be a infinite dimensional Montel-Fréchet space.
Then F is a uniform retract of every Fréchet space E containing F as a
subspace if and only if F is isomorphic to s.

Proof. The argument of Mankiewicz [3] shows that the existence of a
uniformly continuous retraction from a separable Fréchet space E containing
F as a subspace onto F implies the existence of a Lipschitz retraction from
E onto F. Thus the result follows from Theorem 1.2. O
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