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A NOTE ON CONVERGENCE TO INFINITY OF FOURIER SERIES

BY

A. OLEVSKII (MOSCOW)

It is well known that in many problems concerning trigonometric series
some compact sets of Lebesgue measure zero exhibit the same behaviour
as sets of positive measure. For example in uniqueness theory: there exist
compact sets of measure zero which can support Borel measures u such that
B(n) — 0 as |n| — oo (see A. Zygmund [4], Ch. IX).

Recently S. Konyagin [1] proved that if E C T has positive measure then
no trigonometric series converges to +o0o at every point of E. He conjectured
that this result can be extended to some compact sets of measure zero. The
purpose of this note is to show that this is not so even for L2-Fourier series.

THEOREM. Let E be a compact set of measure zero in the circle T. Then
there ezists a function f : T — RU{+00} satisfying the following conditions:

(i) f is +00 on E and continuous outside E;
(ii) f € LP(T) for every p < +o0;
(iii) the Fourier series f ~ 3 ., ancosnt 4+ b,sinnt converges to f
everywhere. -

The proof is based on Carleson’s famous theorem. Let U4 denote the
set of continuous functions f on T with Fourier series

f(t) =Y f(n)e™
n>0

uniformly convergent to f. It is a Banach space with the norm

N
1£1) = sup|| 3= Flmpe

n=0

o)’

S. Vinogradov showed that the Carleson-Hunt inequality implies some
nontrivial lower estimate of the norm of a linear functional of Cauchy integral
typeon U,4. Using this D. Oberlin [2] proved that for any compact set E C T
of measure zero the restriction operator I : U4 — C(E) is surjective. Hence
by Banach space theory every f € C(FE) can be extended to f* € U, so
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that
If*lva £ Kllfllce)

where K is a constant depending only on E. We refer to [3] for more details.
Now we give the proof of the theorem given above.
1. For a given natural number v let us define a trigonometric polynomial
f, with the following properties: '

1.1. Reflg > 1;
1.2. Spec f =supp f C [v, V[, V' > v;
1.3. || fllua < 2K.

For this purpose by the Oberlin theorem we extend the function ge""“ &,
then multiply the result by ‘™t and take the partial Fourier sum w1th a suf-
ficiently large index.

2. For given v take the polynomials f, , f.,,..., f,, with 11 = v,
Va =V, V3 =Vj, ..., Vy =V)_y. Set

F,,= "z:fv, .

i=1
The following assertions are true:

2.1. ReF, ,|g > 1;

2.2. Spec F,, C [v, V[, ¥ = vi;

2.3. ||Fy.llu, < 2K;

2.4. ||FosllLe(ry < 2Ks7VP (p > 2).

Only the last one needs an explanation.
Denoting by m the normalized Lebesgue measure on T and using the
orthogonality of the polynomials f,, we have
1 o 1 2K)?
f IFv,a|2 dm = 32 f |fV,- |2 dm < ;ma.x"f.,,. "%JA < (——81‘ .
T =17
Then

_ 2K)?
IFelzn € J 1RO Ul < <Y

3. It is easy to define a sequence of real trigonometric polynomials {7}
satisfying

.1 |Inllacry = Xrez ITi(n)] = o(l);

3.2. i|lg > 1;

3.3. ni(t) = 0i(1/1) (t € E) and o is uniform on every closed segment
contained in T\ E.
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To this end divide the circle T = [—7, 7] into [ segments of equal length.
The symbol A; will denote the union of segments having nonempty inter-
section with E. Let B; be the union of segments which are more than 27 /!
distant from A;. Putting ¢i(t) = 1 fort € A; and ¢y(t) = 0 for t € B;
and extending by linear interpolation on the remaining segments we get a
Lipschitz function ¢; satisfying

ledlacry = O(lleillLacry)  (see [4], Ch. VI).

The last expression is o(!).

It is clear that (), A; = E, UyNi>y Bi = CE, so by approximating
2¢; by partial Fourier sums with large index we obtain polynomials {r;} for
which 3.1-3.3 hold.

4. Now suppose
1
(1) F()=) 7EnaOn(t) = Y w(t).
I
We choose the numbers v; so as to fulfil the following (see 2.2):

Spec u; C [q:,<11+1[, O<q1<qg<...
By 2.4 and 3.1 we have

Nuillory < THIE, 2t lleenylimillacry = o(2717),
so F € L? Vp < o0.
Similarly by 2.3 and 3.1 we get
(2) lullua, <IUE, 2lluadlnllace = o(1).

Further by 2.3 and 3.3 the series (1) is convergent uniformly on every closed
segment contained in T \ E. Put

ReF(t), t¢E,
f(t)={+§o,() th.

It is clear that (i), (ii) are fulfilled.
The partial Fourier sums S, ( f;t) satisfy the condition

n-1

Se(fit) =Y Reuw(t) - f(t) VteT
=1

(see 2.1, 3.2).
Finally, for ¢ € (g1, qi4+1[ we have
So(fit) = Sq(fi1) + So(wi;t) = Sq(f31) + o(1)
by (2). This completes the proof.

Remarks. 1. It is evident that the condition (ii) in the theorem cannot
be replaced by f € L*°.
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2. The author does not know whether a direct construction not using
Carleson’s theorem is possible.
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