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CENTRAL POINTS OF CONVEX SETS

BY

C. BESSAGA (WARSZAWA)

Assume that K is an infinite-dimensional compact convex subset
of the Hilbert space l,. The classical theorem of Keller [7] says that K
is homeomorphic to the Hilbert cube ¢ = [—1;1]*. Anderson [1] has
proved that P = (—1;1)®, the pseudointerior of the Hilbert cube, is
homeomorphic to !,. The problem arises to identify those subsets of K
which topologically are I, and, in particular, to study subsets 4 < K
such that

(%) (K,4) =(Q,P),

i.e. there is a homeomorphism of K onto ¢ which carries A onto P. In
practical situations, sets A with property () arise frequently as comple-
ments of the aureoles (see formula (1)) of certain points ¥ € K. The purpose
of this paper is to study such points y.

1. Preliminaries. The symbols U, N and \ denote the set-theoret-
ical operations of union, intersection and difference, respectively; -+, -
and — being reserved for denoting the algebraic operations on scalars
and vectors and also on sets of scalars and vectors. All vector spaces
appearing in this paper are over the field R of reals.

For y, z in a vector space, we let

[y;2) = {Le+(1—t)y: 0<t< 1}

to be the half-open segment; similarly we denote by [y; 2] and (y; 2z) the
closed and the open segments, respectively.
By map we always mean a continuous mapping.

A. Assume that W is a convex set in a vector space K. By the aureole
of a point y € W we mean the set

(1) " aur, W = U [y;2).
zeW
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Notice that in terms of the aureoles one can easily define the radial
interior ([3], p. 162) of W,

(2) rintW = () aur, W,
yew
and the set of extreme points
(3) ExtW = () (WN\aur,Wu{y}).
yew

1.1. PROPOSITION. (i) zeaur,W implies aur,W c aur,W; (ii) if
y erintW, then aur,W = rintW.

Proof of (i). Assume that y € W, z eaur, W and x € aur,W. Igno-
ring the trivial case where z, y, 2 are co-linear, denote by B the interior
of the triangle conv{z, y’, 2’} such that

[2;2'1V[y; 91 = W, ze(y;¥),2e(2;7),
and let p € W be a point with the property

(¥;p) = Bn(y+R-(z—y))
(see Fig. 1). Since z € (2; 2')NB, we have z € [y; p) < aur,W.
Statement (ii) follows immed.ia,tdy from (i) and from formula (2).

Fig. 1

B. Assume that U is a convex subset of a Banach space X. Denote
by X* the dual of X, i.e. the space of all continuous linear functionals
on X.

An element 2 € U is a support point if there is an f € X* which supports
U at 2, i.e.

inff(U) < supf(U) = f(2) = 1.

A support point 2 for U i8 strictly exposed if every f € X* which supports
U at 2 is strictly less than 1 on U\ {z}. The sets of all support points and
of all strictly exposed points for U will be denoted by suU and sex U,
respectively.

The set U is called elliptically convexr [7] if suU = sex U.

4
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C. Assume that V is a closed convex subset of the Hilbert space I,.
Let s: I, > V be the metric projection, that is the mapping which
sends any point z € l, to the point y in V which is the nearest to x ().
For every u € l,, define the map g,: V — V by ¢,(¢) = s(z+u)forx e V.

1.2. PROPOSITION. Let u € R-(V—V)\(V—-V). Then

(@) g,(V) = su¥;

(b) if z and z+ au are in V for some a > 0, then g,(V) < V\aur,V;

(¢) of ze V\suV, then ¢,(V) <« V\aur,V;

(d) if z esexV, then g,(V) = {z}u(V\aur,V). l’

Proof. (a) Let 2, e ¥V, and p = ¢,(x,). Since p is the nearest point
in V for x,+ 4, the hyperplane passing through p and orthogonal to
Ty + u —p supports V at p.

(b) Let x € V, and p = g, (z). Pick an f € (I,)* which supports V at p.
Clearly, the hyperplane f~'(1) separates the point x -+« from the set V,
whence f(xz+wu)> 1> f(x). Therefore, f(u) > 0 and, remembering that
z+aueV, we get

f(&) < f(2)+af(u) = f(z+au) < 1.
Hence, for every ¢ > 0,
flpte@—2) =1+c(1—f())>1, ie. p+e(p-—-2)¢V.

Thus p € V\aur, V.

(c) follows immediately from the fact that if ze V\suV, then
aur,V < V\suV.

(d) Suppose . that x eV and

P = g.(x) ¢ {Z}U(VNaur,V), ie. peaur,V\{z}.

Then there exists a y € V\ {2} such that p e (y;2). Hence, if f € (1,)*
supports V at p, we must have 1 = f(p) = f(y) = f(2), so z cannot be
strictly exposed in V.

D. Let Y = (Y, d) be a complete metric space, and @ =[—1;1]%
the Hilbert cube. A closed subset [an F, -subset] A4 of Y is called
a Z-set (%) [a Z,-set] if it satisfies the following condition:

(z) every map f: @ — Y is a uniform limit of (Y \ 4)-valued maps.

() If V is compact, then the standard Bolzano-Weierstrass argument shows
that such a y always exists and s is continuous. The same is true for an arbitrary closed
convex set, but the proof is more involved (see [6], Chapter V, § 1.4). For an interest-
ing discussion of metric projections in a general metric space setting see Singer [10].

(3) The concept of a Z-set has been introduced by Anderson [2]. The present
definition is a modification (due to Torurnczyk [11]) of the Anderson original defi-
nition. The two definitions are equivalent in the case of ANR spaces.
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The classes of all Z-gets and Z -sets will be denoted by Z(Y) and
Z,(Y), respectively.
1.3. Remark. Let Y be homeomorphic to . Then a closed set 4 < Y

is a Z-set if and only if, for every positive integer m, there is a map
f: Y > Y\A such that

1
supd (f(2),r) < —

ze¥
The Baire category argument applied in the space of maps yields

1.4. PrOPOSITION. A € Z (Y) if and only if A is the countable union
of Z-sets.

2. Central points. In this section we assume that K is an infinite-
dimensional compact convex subset of ,.

Definition. A point y € K is said to be central if aur,K € Z,(K).
The set of all central points of K will be denoted by cent K.

Central points have been introduced in [4], and their significance
is due to the folowing fact ([4], 2.4, cf. [6], Chapter V, Proposition 4.2):

GENERALIZED KELLER THEOREM. If 2 €centK, then there ewists
a& homeomorphism of K onto Q which carries K\aur,K onto P.

We recall that P = (—1;1)®, the pseudointerior of the Hilbert
cube Q.

2.1. PROPOSITION. If x € cent K, then aur,K c centK.

Proof. For every y € K, the set aur, K is of type ¥, as the union
of the sequence of (1 —1/n)-homothets of K with respect to y. Now, if
y € aur, K, then, by Proposition 1.1 (i), aur, K < aur, K. We complete
the proof by observing that every F,-subset of a Z,-set is a Z,-set itself.

For w el, write

diam, K = sup{llyll: ye K—K,u e R-y}.
Obviously, diam,K > 0 iff u € R- (K — K).

2.2. LEMMA. There are u,eR-(K—K)\(K—K) for n =1,2,...
such that - N
limdiam, K = 0.

Proof. Let (u,) be an orthonormal basis for the infinite-dimensional
pre-Hilbert space R. (K — K). The set K — K is compact, therefore every
bounded sequence of its elements contains a convergent subsequence,
and every orthogonal sequence in K — K tends to zero. Hence

limsup {|{tu,|: tv, e K—K, te R} =0, i.e. limdiamu“K = 0.
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From the last condition and the fact that u,’s are mormalized it fol-
lows that u, ¢ K — K for all but finitely many n’s.

Using the last lemma and the properties of maps g, stated in 1.C
we prove

2.3. ProPOSITION. cent K > (K\suK)uUsexK.

Proof. Suppose that z e (K\suK)uUsexK. By Lemma 2.2, there
are u, € B- (K - K)\(K — K) such that diam, K<1/n for n =1,2,...
Let

v, = 0w, u,.

Clearly, v, € BR: (K — K)\(K — K), whence, by 1.2,

(4) g,,n(K) < (K\aur, K)u{z}.

Evidently, lg, (z)—all <2|v,ll =2/n for xe K, n =1,2, ... Hence,
for every map f: @ — K, the sequence (9,,0f) converges uniformly to f.
Thus, by (4), the set aur, K\ {z} satisfies condition (z) and, being of type F,,
it is a member of Z,(K). By 1.4, aur, K € Z,(K), i.e. 2 is a central point.

2.4. COROLLARY. rint K c cent K.

This follows from Proposition 2.3 and the fact that rint K <« K\suK.

2.5. PROPOSITION ([4], 2.6). Suppose that a point z € K satisfies one
of the following conditions:

(a) inf{diam,K: ue K—K,2+u e K} = 0;

(b) there is an orthogonal sequence (v,) such that v, # 0, 2+v, € K
forn=1,2,...

Then z € cent K.

Proof. The sufficiency of (a) follows from Proposition 1.2 (b). The
implication (b) =- (a) i8 a consequence of the fact that the sequence
(diam, K) tends to zero (cf. the proof of Lemma 2.2).

If {z,: »n =1,2,...} i8 a dense subset of the set K, then, evidently,

z = > 27"z, is not a support point (%) for K. Hence, by 2.4, centK is
non-:;ripty. In fact, a much stronger result holds:
2.6. THEOREM. The set cent K i8 a dense G4 in K ; moreover,
K\centK e Z,(K).

This theorem is a straightforward consequence of the next two l@mmas.

2.7. LEMMA. The set K\centK satisfies condition (z) as a subset of
the space K.

(*) This argument is due to E. Michael, see Klee [8]. The fact that K\suK is
non-empty was known to Keller [7]. i
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Proof. Assume that
(5) x, € cent K .

Clearly, f(;r each map f: @ — K, the maps f,: ¢ — K defined by
1
fu@) = (1= ) (fle)—a),  ae,

converge uniformly to f and have their values in aur, K.

By (5) and 2.1, aur, K < cent K. Hence K\ cent K satisfies condi-
tion (z).

2.8. LEMMA. The set cent K is of type G,.

Proof. For each z € K, let

T 1

be the (1 —1/n)-homothet of K with respect to x. For each pair (n, m)
of positive integers, denote by L,,, the set of points x € K for which there
exists a map f: K — K with the properties

supllfie) —el < — and  f(K) c KK, ().
zeK m

By the theorem of Keller [7], K =~ @. Hence, by Remark 1.3,
NL,, ={xeK: K,(v)eZ(K)}.
m

Observe that (K, (z) = aur, K. Hence, by Proposition 1.2,

N NLy, = {x: K, (x) eZ(K) for n =1,2,...} = {z: aur,K € Z,(K)}
= cent K.

To complete the proof we notice that each L,,, is open in K.

In general, cent K need not coincide with K (see Examples 3.6 and 3.7).
However, it follows from Proposition 2.3 that

2.9. COROLLARY. If K is elliptically convex, then cent K = K.

3. Comments and examples. Suppose that U is a convex set in a Haus-
dorff topological vector space X. Let A(U) denote the set of all contin-
uous affine functionals f: A — R. Finally, let asu U and asex U be the
sets of the points in U which are supported and which are strictly exposed,
respectively, by functionals in A4 (U).

Since every f e X* restricts to a member of 4 (U), we have

sulU c asulU
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and
gex U osulUnasexU or asexU < sexUuU(U\sul).
Hence

3.1. ProrosITION. (UNsuU)usex U o (UN\asuU)uvasex U.
We also have

3.2. PROPOSITION. UN\rintU o asulU o sulU.

In fact, if f € A(U) supports U at z, and y € U is such that f(y) < f(z),
then there is no z € U with x € (y; 2) (because otherwise we would have
f(2) > f(x) = supf(U)), i.e. x € U\rint U.

Wojtaszezyk [12] has shown that if U is a closed convex subset of
a Banach space and U — U spans linearly the whole space, then U\ rint U
= su U if and only if U has non-empty topological interior.

By 2.4 and by the Generalized Keller Theorem we have

3.3. CoroLLARY. (K, K\rintK) o~ (@, P) provided that rint K is
non-empty.
We note that there exist compact convex sets K with rint K = .

34. Example ([4], 2.13). Let M denote the set of all probabilistic
measures on [0; 1]. Then rint M = @. The M regarded as a subset of C([0; 1])*
equipped with the weak-star topology is compact and admits an affine-homeo-
morphic embedding into 1,.

Proof. Take an arbitrary u € M. Evidently, there is a ¢ e [0; 1]
with u({t}) = 0. Let J, be the Dirac measure at ?, i.e. §,(4) =1ifte 4
and 6,(4) =0if t ¢ A. X v € O([0;1])* is such that u e (6;;») and, say,
u=(1—a)é+ar (0< a<l), then

v({t})=izi<0, ie. v¢ M.

Hence u ¢ rint M. Thus rint ¥ = @.

The compactness of M follows from the fact that it is closed (with
respect to the weak-star topology) in the unit ball of C([0; 1])*.

The required embedding h: M — 1, can be defined by & (x) = (u(x,)),
where (z,) is a fixed sequence in C([0; 1]) whose linear span is dense in
the space and such that

Dl P < oo
n

(for instance, x,(t) = t"~'/n for t € [0; 1]).
An arbitrary infinite-dimensional compact convex set (in a topological

vector space) which admits an affine-homeomorphic embedding into I,
18 called ([4], § 2) a Keller space. Let us remark ([8]; cf. [5], Chapter 111, § 2)

5 — Colloquium Mathematicum XXXVII.1
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that every infinite-dimensional compact convex set which admits a count-
able separating family of continuous affine functionals is a Keller space.
(The embedding into I, can be constructed as in the proof of Example 3.4.)

3.5. Remark. Statements 2.1, 2.3, 2.4, 2.5 (a) and 2.6 are valid
for arbitrary Keller spaces if one replaces su K and sexK by asuK and
asex K, respectively; the diam,K can be understood as sup{d(z,y):
z,yec K,u e R-(xr—y)}, where d i3 an arbitrary metric compatible with
the topology of the Keller space K.

This follows from Proposition 3.1 and from the affine-topological
invariance of the notions: cent, asu, asex, rint.

From the Definition given in Section 2 it follows that if # € cent K,
then '

(6) HK\aur,K is dense in K.

This fact will be used in the next three examples.
3.6. Example. Let

1
A ={a:elz: z, =1, |m,-|<7 Jor i>2=-

If K = conv(AuU{0}), then cent K = K\ {0}.
In fact, the points of K\ {0} are central by Proposition 2.5 (b). The
set K\ aur, K = A does not satisfy (6).

3.7. Example. Let A be the sa‘me as in Example 3.6, and let
1
B = {welzz z, =0, I$‘|<"ﬁ Jor 2<i<m and @, =0 for i>m},

where m is a fized integer not less than 2. Then, for K = conv(4 UB), we
have K\ cent K = B.

For the proof observe that the points in K\ B satisfy condition (b)
of 2.5, and if « € B, then the closure of K\ aur, KX does not contain the
point 0.

3.8. Example (H. Torunczyk). Let

K = {melzz ;=0 for 1 =1,2,..., Zw,-gl}.
i=1
Then the set K\ cent K 18 infinite-dimensional.
Proof. Assume that

vxed, ={weK: Zn:m,. =1} and yekK.

i==1
.
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Then
yeK\aur, K iff Vy+t(y—2a)¢K iff V Jy,+i(y,—z)<0
>0 t>01i<n
iff I V@+yy,—te,<o0 iff Iy, =0,z #0.
i<n t>0 i

Hence, for x € A,, we have

n
ENaur,K ={yeK: dy, =0 #2} c U{yekK: y; =0},

i=1
whence K\ aur, K is not dense in K and, therefore, x ¢ centK. Thus K\ centK

o2
contains the infinite-dimensional set | ) 4, and, therefore, it is infinite-
dimensional itself. n=l
The affine homeomorphism (z,) - (x,/n) carries K onto a compact
subset of [,.

3.9. QuEesTION. Is condition (6) always equivalent to « € centK?
(P 1000)

3.10. Example. The solid ellipsoid
9= {w ely: 2n2|axn|2 < 1}

is compact and elliptically convex. Therefore, by Corollary 2.9, centd = 3.
Let 9\aur,9 = 8 be the “surface” of the ellipsoid. If y € 8, then I\aur, I
= S\ {y}.

3.11. Example. Let 9 and S be those of Example 3.10. Let

It ={xed: 2, >0} and 8" =8n3*.

By Propositions 2.3 and 2.5 (b), we have cent3* = 9*. Evidently,
It\aur, 9+ = 8.

3.12. Remark. Evidently, the ellipsoid § is homeomorphic to the
unit sphere X of ,; S\ {y} is homeomorphic to 2 with one point removed
and, via the stereographic projection, to the whole space l,; 8§* is homeo-
morphic to the upper half-sphere and to the closed unit ball B of I,.
Hence, using the Generalized Keller Theorem, we obtain the well-known
results of Klee [9] and Anderson [1]:

lg~2>~B~P =~R".

3.13. Example. The set of central points of the Hilbert cube Q is the
whole Q.

To show this observe that @ is affinely homeomorphic to the subset
{xely: |z <1/i fori =1,2,...} of I, and apply Proposition 2.5 (b).
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Examples 3.12 and 3.13 and Corollary 2.9 show that the class of K’s
for which cent K = K is wider than that of infinite-dimensional compact
elliptically convex subsets of I,. But even the latter class is quite exten-
sive, as the next propagsition shows.

3.14. ProposITION ([7]; cf. [6], Chapter III, § 1). If K is & convex
subset of 1, such that 0 € K\suK, then, for every ¢ > 0, the map f: 1, -1,
defined by f(x) = x-(1+¢llzll)™" carries K onto an elliptically conver set.
Hence the collection of elliptically convex compact subsets of 1, is dense, in the
Hausdorff metric, in the space of all compact convex subsets of 1,.

By Theorem 2.6, for every K (which is an infinite-dimensional compact
"convex subset of I,), almost all points, in the sense of the Baire category,
are central. The last proposition substantiates the conjecture that “almost
all” gets K have the property cent K = K.
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