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SUMMABILITY OF PURE EXTENSIONS
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In this paper we always consider algebraic structures of a fixed
similarity type and a first order language with identity corresponding
to this type. \

Let X be an arbitrary set of formulas of our language, and 2 an
arbitrary structure. Then by X(2) we denote the corresponding set of all
formulas with constants in 2, i.e. of all formulas which can be obtained
from X by substituting some elements of 2 for some free variables. As
to the notation and general suppositions which are not explained here,
see [9]. For a formula ¢ having only #,, ..., #, as free variables, the symbol
O (¢) denotes the sentence Ha, ... x,90. We recall that a senfence is a for-
mula with constants without free variables.

Let A = B. Then A is downward X-pure (upward X-pure) in B if,
for every formula ¢eX (), B |= T(p) implies that A |= H(p) (A|= HU(p)
implies that B |= U (¢), respectively).

If A is downward and upward X-pure in B, then we say that A is
Z-pure in B. If X is the set of all conjunctions of atomic formulas, all
positive formulas, all Horn (1) formulas or all formulas, then for X-pure
we will say pure, positively pure, Horn-pure or elementarily pure, respecti-
vely. Moreover, each of those qualifications may be acompanied by the
adverb downward or upward whose meaning was already defined.

For various sets X, the notions of downward X-purity, upward
Z-purity and X-purity were already studied. E.g. purity was already
defined and used in [9], and it generalizes a well known notion from the
theory of Abelian groups. Sometimes those three notions coincide as
we will gee in the following examples.

(1) A is downward pure in B if and only if 2 is pure in B, and A
is upward pure in B if and only if 2 = B.

(!) For the definition of Horn formulas and atomic Horn formulas see
e.g. [2].
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(2) & is downward (upward) elementarily pure in B if and only
if U is an elementary substructure of B (see Lemmas 4 and 5
below).

(3) If 2’ consists of all sentences, then the downward X-purity, upward
Z-purity or X-purity of 2 in B are all equivalent to 2 = B and Th(A)
— Th(B).

(4) If X' consists of all universal sentences, then 2 is downward
X-pure in B if and only if A < B.

(5) The diagonal substructure of a direct power of a structure is
upward Horn-pure in this direct power. On the other hand, the diagonal
substructure is not always downward Horn-pure in this direct power.

(6) The notions of downward positive purity, upward positive purity
and positive purity are all different.

ProprostrioN 1. Let A = B. Then A is downward (upward) E-pure
in B if and only if there is a structure € such that A is downward (upward)
Z-pure in € and B is upward (downward) Z-pure in €.

Proof. If 2 is downward Z-pure (upward X-pure) in B, then it suffices
to put B = C.

Conversely, suppose that a structure € satisfying the condition of
Proposition 1 exists. Let geX () < 2(B) and suppose that B |= ().
Then we have € |= " (¢) and also 2 |= E(¢), since U is downward X-pure
in €.

In the case when 2 is upward Z-pure in € and B is downward Z-pure
in €, the proof is analogous.

ProrosiTioN 2. Let A = B. Then A is Z-pure in B if and only if there
is a structure € 2 B such that A and B are Z-pure in C.

Proof. By Proposition 1.

ProposiTION 3. Let A = B < €, where A is downward (upward)
Z-pure in B and B is downward (upward) Z-pure in €. Then A is downward
(upward) Z-pure in €. :

Proof. Obvious.

Now we give two obvious but essential lemmas.

LemMMA 4. If A is downward X-pure in B, then for each jormula ¢eX ()
and each sequence aeA”

B |=¢[a] implies that A |= ¢[a].

LemMA 5. If A is upward X-pure in B, then for each formula geX ()
and each sequence ae A"

A |=gla] implies that B |=g¢[a].

COROLLARY 6. If A is Z-pure in B, then for each formula ¢eX(2A)
and each sequence aeA”

A |=gla] if and only if B |=¢[a].



RELATIONAL STRUCTURES 29

We say that the X-purity (downward X-purity) [upward 2-purity]
is summable, if each ascending chain of structures

s c...cU,s... <o),

such that 2, is X-pure (downward X-pure) [upward Z-pure] in 2, ,
for each n < w, is such that 2[, is Z-pure (downward Z-pure) [upward
Z-pure] in [J U, for each »n < w.

n<w

It is easy to see that the downward X-purity in cases (1), (2) and (4)
18 summable and that the X-purity in the case (3) is not summable. There
is of course the classical result of Tarski and Vaught [7] (see also our
Corollary 11) that elementary purity is summable. Some other papers
on chains and sums of such chains (see e.g. [1], [3] and [4]) concern such
a Z-purity which is summable. We do not know any characterization
of such sets X' for which X-purity or downward X-purity or upward
2-purity is summable. The following theorem shows how from a given
set 2" such that the X-purity is summable we can obtain larger sets having
the same property.

For any set X of formulas X', denotes the set consisting of all finite
conjunctions of formulas from X

2, denotes the set consisting of all finite disjunctions of formulas
from X';

2y denotes the set consisting of all formulas of the form Hagp for
¢peZ, x being one of the free variables of ¢;

2 denotes the set consisting of all formulas of the form Vazg for
peZ, ® being one of the free variables of ¢;

2— denotes the set consisting of all negations of formulas of X.

TneoreM 7. If X is a set of formulas for which the downward E-purity
(upward Z-purity) is summable, then each of the sets X Ay 2y Ly 2y
has the same property.

Proof. Let A, =2, =... =, = ... (n < w), be a chain of struc-
tures such that for each n << w, 2, is downward Z,-pure (upward X, -pure)
in2,,,,, where X, denotes any of the sets X, , X, Zpy Ly and B = [ ) YU,.

n<w
Downward X, -purity. Suppose that a formula of the form ¢ A ¢,
where ¢, peX(2,), is satisfiable in B. Let ,, ..., ®, be the free variables
of @ A y. This means that there is a sequence <b,,..., b,>eB" such that
B |=(p A )[buy..., b,], so that, consequently, B |=¢[b,, ..., b,] and
B |=ylbyy ..., by]. Let Ay, be a structure such that A, = A, and by, ...
.+y bued,,. Since the downward X-purity is summable by hypothesis,
we have ¥, |=¢[b,,...,b,] and A, |=v[b,,...,b,], by Lemma 4.
Thus Ay, |= (@ A 9)[by, ..., b,] and U, |=H(p A y). Consequently,

|=H(p A y), since 2; is downward X,-pure in ,, (by Proposition 3).
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Upward X ,-purity. Suppose that ¢, peZ(2y) and A |=H(p A y).
By an analogous reasoning using Lemma 5 instead of Lemma 4, we obtain
B|=U(p A p).

For the downward X -purity the proof is easy.

Upward X -purity. Suppose that ¢, peX () and 2y |=H(p v p).
Thus there is a sequence aeAjy such that 2 |= (¢ v ) [@], whence
Ap |=¢la] or A, |=y[a]; say U |=¢[a]. Since A, is upward X-pure
in 2, for each m >k, Y, |=¢[a]. Now, using the summability of the
upward X-purity, Lemma 5, and the fact that B = |J %,, we have

k<n<ow
B |=¢plal. So B|=U(p v y).
For the downward and wpward X -purity the proofs are easy.
Downward X -purity. Suppose that a formula of the form Vu,¢
is satisfiable in B, for peX (). This means that there is a sequence
b=<byy..., bn_1ybn, bpyy,...>eB” such that, if we substitute b, for
an arbitrary b,eB, we get that the sequence <by, ..., b, 1, by, byyyy ..o)

satisfies ¢ in B. Let =, ..., z, be all the free variables of Va,¢. Since
B = |JYU,, there is an » < o such that A, 2 A; and b, ..., bped,.
n<w

By the previous remark, there is a sequence b’e A, which satisfies Va,¢
in B. Such a b’ can be obtained by putting b, = by, ..., by, = b, and
bge A, for s > m. Then for an arbitrary element b, ¢ B the sequence obtained
from b’ by the substitution of b, ¢ B on the n-th place, satisfies ¢ in B,
in particular it is so for all b, eA,. Thus, using the summability of the
downward Z-purity and Lemma 4, we see that every sequence obtained
from b’ by substituting an arbitrary element b, €A, on the n-th place
satisfies ¢ in 2,. Thus b’ satisfies Va,p in 2,.. Since 2, = A, we obtain
that Va,¢ is satisfiable in .
Upward X -purity. Let ¢eX(2y) and let the formula Vu,p be satis-
fiable in 2[;. This means that there is a sequence @ = {a,,...
ey Qp_1y Qpy Ay, ...p €A} such that for an arbitrary aneA; a sequence
obtained from @ by substituting a, on the n-th place satisfies ¢ in 2.
Thus, using summability of the upward Z-purity and Lemma 5, every
one of such sequences satisfies ¢ in B. Suppose to the contrary that the
sequence @ does not satisfy Va,¢ in B. This means that there is an element
bpeB such that the sequence b = {ag, ..., a4y 1, by, Gp 1, ...> does not
satisfy x,¢ in B. Since B = |J U,, there is a structure 2, = A such

n<w

that b,eAd,. Using Lemma 5 and the summability of the upward
Z-purity we have 2, |="] ¢[b]. Now, let us observe that if we replace in ¢
all the free variables different from x, by the corresponding elements
from @, then we obtain a formula yeX(2;) such that 2 |= Va,y. Since
A is upward X -pure in 2,, we have 2, |= Vu,p, but this is impossible
since 2, |= "1 ¢[b] implies 2, |= 7] Va,». This contradiction finishes the
proof.



RELATIONAL STRUCTURES 31

We do not know if for any set X' of formulas, the downward X-purity
is summable if and only if the upward 2—-purity is summable. We only
can prove the following

THEOREM 8. Let X' be a set of formulas for which the downward Z-purity
(upward Z-purity) is summable, and let U, be downward E-pure (upward
Z-pure) in U, ., for all n < w. If, moreover, A, is upward XZ—-pure (down-
ward X—-pure) in U, ., for n < o, then each A, is upward 2 -pure (down-
ward X—-pure) in B = (J U,.

n<w

Proof. Suppose that the downward Z-purity is summable and let ¢
be satisfiable in 2, where ¢ X (). This means that there is a sequence
@e Ay such that U; |= 7]¢ [@]. Using Lemma 4 and the fact that the down-
ward 2-purity is summable we obtain B |= T]¢[a], whence ] ¢ is satis-
fiable in B.

Now, let us suppose that the upward X-purity is summable. Let
g e2—(2y) be satisfiable in B. This means that there is a sequence beB”
such that B |=¢[b]. Let x,,...,®, be all the free variables of ¢. Thus
there is a structure A, 2 2, such that b,...,b,ed, and a sequence
b’eA; such that B |=¢[b’]. Since the upward X-purity is summable,
%, is upward Z-pure in B, whence, by Lemma 5, 2, |=¢@[b’]. Thus ¢
is satisfiable in 2, and hence also in 2.

COROLLARY 9. If the X-purity is éummable, then the (X« X—)-purity
s also summable.

Corollary 9 follows immediately from Theorem 8 and the following
simple

LEMMA 10. If for every iel the upward (downward) Xi-purity is sum-

mable, then the upward (downward) (| )X;)-purity is also summable.
iel

Lemma 10 will be also used to obtain

COROLLARY 11. (i) (Tarski-Vaught) If, for each n < w, 2, is an ele-
mentary substructure of U, ., then each AU, is an elementary substructure

of U U,.

n<w
(ii) If, for each n < w,U, is downward (upward) positively pure

in Uy 1, then each U, is downward (upward) positively pure in ) U,.
n<w

(iii) If, for each n < w, A, is downward (upward) Horn-pure in 2, ,,

then each U, is downward (upward) Horn-pure in | A,.
n<w

Proof. (i) and (ii) follow immediately from Theorems 7, 8, and
Lemma 10. By Theorem 7 and Lemma 10, to prove (iii) it suffices to
show that the downward (upward) X-purity is summable, where X is
the set of basic Horn formulas. But this is almost trivial.
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Since now on, we always assume that X is such that the downward
and upward Z-purity is summable, which, by the previous results, is
a natural assumption.

A class " of algebraic structures is said to be X-closed (downward
2-closed) [upward X-closed] if for every 2, Be # the inclusion A = B
implies that 2 is X-pure (downward Z-pure), [upward X-pure] in B.
1t 2" consists of all formulas for “2-closed” we sill say “elementarily closed”’.

Elementarily closed elementary classes are especially important
because those are exactely the classes defined by a model-complete theory
(see [6]).

Proros1irIoN 12. (i) A is downward X-closed if and only if for each
Ue A and peX () either ¢ is satisfiable in A or there is no extension of 2
belonging to A" in which ¢ is satisfiable.

(ii) A" is upward Z-closed if and only if for each e A and ¢eX ()
either @ is not satisfiable in 2 or, for each extension B e A" of A, ¢ is satis-
fiable in B.

THEOREM 13. Let A be a class of structures such that, for every 2, B e A,
if A = B, then there exists a Ce A such that B = € and A is X-pure in C.
Then A is Z-pure in B.

Proof. We can construct by induction a sequence of structures
Apdyucw such that A, =2, 2A, =B and, for each n < v, W, e,
A, = A, and A, is X-pure in A, ,.

Putting

2[*:LJ%VL:L)mz'n:LJQIerl
n<w N<<w n<w
we obtain a structure 2A* such that 2 and B are Z-pure in A*. Thus Theo-
rem 13 follows from Proposition 2.

Remark. The structure 2 constructed in this proof need not belong
to A,

COROLLARY 14. X" is X-closed if and only if for every 2, Be A", where
U = B, there is a Ce A such that B = € and A is X-pure in C.

Proof. The necessity of this condition follows by putting € = B;
the sufficiency by Theorem 13.

ToeorREM 15. Let " be a class of structures such that, for every 2,
Bed,if A = B, then there are € and D from A such thatld = B = € = D,
A is downward (upward) Z-pure in € and B is upward (downward) E-puwie
i D. Thus A is downward (wpward) X-pure in B.

Proof. We can construct by induection a sequence of structures
Updpoo such that A, =A, A, =B and, for each n < w,U,e A, AUy,
c Upyy, Uy, is downward (upward) Z-pure in 2, ., Ay, is upward
(downward) X-pure in 2, ;.
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Putting
A* = U an = U mzn = U 2[2n+1;

nsw n<w n<w

we obtain a structure 2* such that 2 and B satisfy the assumption of
Proposition 1. Thus Theorem 15 follows from Proposition 1.

COROLLARY 16. " is downward (upward) X-closed if and only if for
every A, Be A", where A = B, there are €, D ¢ A such that B < € < D
and A is downward (upward) Z-pure in € and B is upward (downward)
Z-pure in D.

Proof. The necessity of this condition follows by putting € = @ = B;
the sufficiency by Theorem 15.

Finally, we add some facts relating purity and atomic compactness
(see [9]). We will discuss the possibility of imbedding a given structure
in an atomic compact one and solve a problem stated in [10] concerning
purity of such imbeddings.

ProrostrioN 17. If A U ... <, = ... (n < w), i a chain
of algebraic structures such that, for each n < w, AU, is pure in 2, 11, then

(i) if there is an n < o such that 2, is weakly atomic compact, then

U A, is also weakly atomic compact;
n<w

(ii) if there is a cofinal subsequence (2; >n_., of >y, such that
&, is atomic compact, then \J U, is a pure substructure of an atomic com-
pact structure. e

Proof. (i) Let € be a pure extension of (J 2,. If the supposition

n<w

of (i) holds, then € is a pure extension of 2l,. By Theorem 2.4 ((i) < (ii))
[9], A, contains a homomorphic image of €. Hence () 2, is weakly atomic
compact. .

(ii) Without loss of generality we can assume that 2; = 2,. Since

each 2, is a pure substructure of (J 2,, thus there is in view of The-
n<w

orem 2.3 ((ii) <= (iii)) of [9], a retraction h, of () 2, onto 2, for all n < w.

n<w
Moreover, let us observe that for each pair a,, a, of distinct elements
of (J U, there is a structure 2, such that a,, a,ed,, and hence h,(a,)

n<w

# hn(a,). Thus there is a one-to-one homomorphism #: (J U, —

n<w
— Pr_w Uy, defined by h(a)(n) = hy(a). It is visible that & is an iso-
morphism and that hA( | 2,) is a pure substructure of P,_,2,. Since

n<w
all 2, are atomic compact, hence such is also P,_, A, and (ii) follows.

Now we give two examples showing that some refinements of Pro
position 17 are not true.
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ExamprE 18. There is a chain of algebras 2, = AU, < ..., such that

(i) each A, is atomic compact, and (ii) there is no algebra € = | J A, that
is weakly atomic compact. Hso

Indeed, let B = (w, 0,1, ), where 0 and 1 are constants and - is
defined as follows: #& = 0 and #-y =1 if # # 4. It is known (see [5]
and [9]) that B satisfies (ii). On the other hand, B is the sum of an ascend-
ing chain of finite (and hence atomic compact) subalgebras, e.g. it suffices
to put 2, = n+2,0,1, .

ExAMPLE 19. There is a chain of algebras 2, = AU, < ..., such that
(i) each 2, is atomic compact, (ii) for each n < w, W, is pure in A, ,, and

(i) (J U, s not atomic compact.
n< o

Indeed, let B be the free Boolean algebra with ¥, free generators.
It is visible that B is not atomic compact (see e.g. [9], Theorem 4.1
((I) < (iv))). On the other hand, B is the sum of an ascending chain of
finite Boolean algebras. Finally, let us observe that if 2 < 2’ are finite
Boolean algebras, then 2( is pure in 2’, since it is a retract of 2’.

Jan Mycielski constructed an example similar to 19 in which instead
of (ii) the following stronger condition is fulfilled:

(il') for each n < w, U, < A, , (2).
But in his example all structures 2, are of power 2%. We do not

know if the sum of a chain A, < U, < ... <A, < ... (n < w) of coun-
table atomic compact structures must be atomic compact? (P 627)

ExAMPLE 20. The algebra N = {w, z-+1> can not be represented as
a union like in proposition 17 (ii), but N is a pure substructure of {fw, *>,
where fw is the Cech-Stone compactification of the set w with the discrete top-
ology and x* is the (only) continuous extension of the function w1 to fo.

On the other hand, an algebraic structure having an atomic compact
extension does not have in general an atomic compact extension in which
it is pure. This is shown by the following example:

EXAMPLE 21. The algebra A = {w, f, g>, where f and g are any opera-
tions of one wvariable such that

(fy9): 0 28 0 Xo\{<&, k>: k < o)

has topologically (thus atomic) compact extensions (see e.g. [8], [9]) but it
has no weakly atomic compact extensions in which 2 is pure (i.e. downward
pure, see (1)). A fortiori A has no elementary extension which is weakly
atomic compact (this solves in the negative a quesiion formulated in [10]) (3).

(?) < denotes elementary extension, i.e. elementary purity.
(3) The idea of this example is due to C. Ryll-Nardzewski. Originally he has

shown that this algebra U cannot be a pure subalgebra of a topological compact
algebra.
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Indeed, let B be an arbitrary weakly atomic compact extension
of 2. Let I be any set such that [Bl < |I| and consider the following
set of equations: :

A= =fya)'s i #j,4,jel} o {"; = g(yy)": 5 #j, i, jel}
(#; and y;; being unknowns, 4, jel). It is visible that each finite subset
of A has a solution in B (since it has such a solution in 2). Since B is
compact, A has a solution <b;>i; {C;ijq in B. Since |B| < [I], there
are 4, jel, i #j, such that b; =b;. So f(ey) = b; = b; = g(ey;). But
this shows that the equation

(%) f(@) = g(x)

has a solution in B. On the other hand, by the definition of 2, (*) has
no solution in 2. Hence 2 is not pure in B, q. e. d.
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