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Introduction. The theory of Post algebras has been enormously
simplified in recent years notably by Epstein [5], Balbes and Dwinger
[1] and [2], Rousseau [11], Speed [12], and Traczyk [14] and [15]. In
this paper we take, as a starting point, the isomorphism of the categories
of (pseudo-) Post algebras and (pseudo-) Boolean algebras; drawing from
this the isomorphism of the various structure lattices of a (pseudo-) Post
algebra with those of the underlying (pseudo-) Boolean algebra. As an
application we characterize the congruence lattice of a (pseudo-) Post
algebra P and show that it is Boolean if and only if P is a finite Post algebra.
In Section 3 we show that the MacNeille completion of a (pseudo-) Post
algebra P is a (pseudo-) Post algebra, the underlying (pseudo-) Boolean
algebra of which is the completion of the underlying (pseudo-) Boolean
algebra of P. In addition, we characterize the essential extensions in the
category of Post algebras. The objective of Section 4 is the characteriza-
tion of Post functions and generalization of results due to Gratzer [8]
on Boolean functions. Finally, we define and characterize profinite Post
algebras.

1. Preliminary definitions. A pseudo-Boolean algebra D (Heyting
algebra) is a lattice with the least element 0, equipped with a binary opera-
tion *, called relative pseudo-complementation, satisfying

zAaa<b if and only if z < a*b.

Such algebras are known to be equationally definable, distributive,
have least and greatest elements 0, 1 and pseudo-complemented; the ele-
ment a* = a*0 being the pseudo-complement of a in D. An element
ae D satisfying a* = 0 is said to be dense. The set D** = {xe D; z = x**}
is well known to be a Boolean algebra, coinciding with D if and only if 1
is the only dense element in D.

A (pseudo-) Post algebra of order n can be defined as the free product
(coproduct) of a (pseudo-) Boolean algebra and a finite chain F of length
n in the category 9,, of distributive lattices with 0, 1.
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An equational definition, due to Rousseau [11], is as follows:
An algebra

P =C(P;A,Vv,%; *, Dy, ...y Dy_15€5y .0ey €y_y)

with three binary (A, v, *), n unary (*,D,,...,D,_,) and » nullary
(€gy -+ -y €,_1) Operations is a pseudo-Post algebra of order n if it satisfies
(t=1,...,n-1)

[P1] (P; A, v, *; *> is a pseudo-Boolean algebra,

[P.2] Di(xAy) = Dy(x)A Dy(y),

[P.3] Diy(xvy) = Di(x)v Dy(y),

[P.4] DDy (2)) = Dy(x) (k =1,2,...,n—1),

1, <k,

P.5 D,-e =
[P.5] D;(ex) 0, i>t

[P.6] 2 =\ Dyz)Ae,.

im1

A Post algebra of order m is a pseudo-Post algebra satisfying the ad-
ditional identity

[P.7] D,(x)v D}(x) = 1.

In any (pseudo-) Post algebra P the following are true:

(i) The set E = {ey, €15 ...y€,—,} forms a chain 0 =¢,< ¢, < ...
< e,_, = 1 (providing |P| > 2) and is a pseudo-Boolean subalgebra of P.

(ii) The mappings D; have common image D, which is a (pseudo-)
Boolean subalgebra of P, and reduce to the identity on D.

(iii) Dy(@*y) =j£\1 (D, () * D, (»)).

(iv) D;(x) < D;(x) whenever j<1t (¢, =1,2,...,n—1).
(v) <y if and only if D;(2) < D(y) for all + =1,2,...,n—1.
(vi) The elements D;(x) are unique in that they are the only elements
in D satisfying [P.6] and (iv).
(vii) P is the free product of D and F in 2, ;.

If a (pseudo-) Post algebra of order » has underlying (pseudo-) Boolean
algebra D, we denote it by [D],.

If 2, denotes the category of (pseudo-) Post algebras (of order =)
and homomorphisms, &4 denotes the category of (pseudo-) Boolean algebras
and homomorphisms, then the functors F: # -, and G: #, > % given
by ¥(D) = [D], and F(k) = [h)],, where (cf. [11], Theorem 7)

3. () =‘v B (Ds(@)A &,
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G(P) is the underlying (pseudo-) Boolean algebra D of P and G (k) is the
restriction of A to D, are mutually inverse. Hence £, and % are isomorphic
categories.

A (pseudo-) Post filter in a (pseudo-) Post algebra P is a lattice filter
V closed under the mapping D, _;. The set #p of all (pseudo-) Post filters
is a complete sublattice of the lattice {F; (M, [[) of all lattice filters in P.
A filter of order ¢ is a lattice filter containing e; but not e;_,.

A (pseudo-) Post congruence is a pseudo-Boolean congruence @ satis-
fying the additional property

a = b(P) implies D, _,(a) = D,_,(b)(P).

The set o p of all (pseudo-) Post congruences is a complete sublattice
of the lattice {o"; M, [[> of all pseudo-Boolean congruences.
Clearly, ®@¢ X'p implies that Ker® = {ze P; x = 1(D)} e Fp.

2. Congruences, filters and subalgebras. The result of this section
contains a eclarification and simplification of early results in the field.

THEOREM 2.1. In any (pseudo-) Post algebra P = [D], the lattices
A py Fpy, X p, Fp are mutually isomorphic pseudo-Boolean algebras. The
lattice Sp of (pseudo-) Post subalgebras of P and the lattice ¥ of (pseudo-)
Boolean subalgebras of D are isomorphic.

Proof. The isomorphism of &', and &, is well known as is the fact
that if Ve#p, then the relation @[V] defined by

T = y(@[V]) if and only if zoy = (x*y)A (y*x)e V
is a pseudo-Boolean congruence on P (cf. [10]). In addition, zoye V
implies that
Dy (*Y)A Dy (y *3) = Dy, (w0y)e V,
or, equivalently,

n—-1 n-1

jﬁ\l(Dj(w)oDj(y)) =7_/=\1(D1(w)*1)j(?l)) /\Z\l (D;(y)* Dy(w))e V7,

and, therefore, D;(z)oD;(y)e V for all j =1,...,n—1. It follows that
O[V]e X p. That the mapping V—@[V] is an order isomorphism from
Fp onto A p follows from the fact that V = Ker O[F] and P A p implies
® = O[Ker ¢].
The isomorphism of ¥, and & follows from the fact that if Ve#Fp
and
(V] ={zeP; D, ,(w)eV},

then the mapping V—[V], is an order isomorphism. The details are left
to the reader.

Finally, if 8¢%p, then the sublattice [Su E] of P, generated by 8
and E, is the free product [8], of § and E in 9, (cf. [7], Theorem 12.5)
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and, therefore, a (pseudo-) Post subalgebra of P. Clearly, the mapping
S—[8], from &, into ¥p is order-preserving; that it is onto follows from
the observation that if Te¢ #p, then § = TNnDe ¥p and T = [8],. Hence
&p and & are isomorphic.

COROLLARY 2.2. In any Post algebra P the following are equivalent:

(1) P s simple,

(i1) P 18 subdirectly irreducible,

(iii) P = [2],-

COROLLARY 2.3. If P is a (pseudo-) Post algebra, then

(1) VeFp is maximal if and only if, for every xe P, exactly one of
D,_,(z), Dy_,(x) is in V (cf. [10], Chapter I, 13.10);

(ii) a prime filter is a (pseudo-) Post filter if and only if it is of order
n—1.

COROLLARY 2.4. If P i8 a Post algebra, then

(1) VeFp 18 maximal if and only if it is prime;

(ii) a prime filter V is a Post filter if and only if it i8 minimal.

COROLLARY 2.5. If Q is a subalgebra of a (pseudo-) Post algebra P, then
any (pseudo-) Post congruence on Q has an extension to P.

Proof. It suffices to show that the category of (pseudo-) Boolean
algebras has the congruence extension property. Let D be a (pseudo-)
Boolean algebra, Se ¥, and @Pe A 5. If

Ve =Ker® and V = {reD; x> d for some de Vg},

then, clearly, Ve#,, Vg =VnS and & = O[V]NnS% so that O[V]
is the required extension.

For Post algebras, Corollary 2.5 follows from the fact that every
Post algebra can be embedded in an injective Post algebra (cf. [1]) and
that every equational class of algebras satisfying this condition has the
congruence extension property (cf. [7]). Incidentally, since £, and %
are isomorphic categories, a pseudo-Post algebra P = [D], is injective
if and only if D is injective in #. The injectives in # are the complete
Boolean algebras (cf. [3]) and, therefore, P is injective if and only if it
is a complete Post algebra.

The next theorem contains a characterization of the congruence
lattice of a pseudo-Post algebra. |

THEOREM 2.6. A lattice L is the lattice of pseudo-Post filters in a pseudo-
Post algebra if and only if it is an algebraic lattice in which the compact
elements form a sublattice C whose dual C is pseudo-Boolean.

Proof. It suffices to prove the theorem for pseudo-Boolean algebras.
The necessity follows from the fact that the compact elements in the
lattice # ,, of filters of a pseudo-Boolean algebra D are precisely the princi-
pal filters which form a lattice dually isomorphic to D. The sufficiency
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is proved by showing that if L satisfies the conditions of the theorem, then
L ~ %5 under the mapping ¢: V>V {f; fe V} from F5 to L. Clearly,
¢ preserves order and, since a = \/{z;xe V,}, where V, is the filter
{ce C; ¢ < a} in C, it follows that ¢ is onto L. Finally, if V,p = V,¢ and
¢,e V,, then ¢, C and ¢, < V{f;fe Vy}, so that ¢ <V {f; fe Fy} for some
finite subset F, of V,, and, therefore, ¢,e V,. Hence ¢ is an isomorphism.

THEOREM 2.7. If P = [D], is a (pseudo-) Post algebra, then Fp is
Boolean if and only if P is a finite Post algebra.

Proof. Clearly, it suffices to show that #, is Boolean if and only
if D is a finite Boolean algebra. If #, is Boolean, then the pseudo-
complement

V* = {xeD;xva =1 for all ae V}

of V in &, coincides with the complement of V in &, and, therefore,
VIIV* = D, so that anb = 0 for some ae V,be VV*. It follows that b
has a as a complement and, therefore, a = b* so that ae D**. Hence, since
b = a*, we have shown that there exists an ae D** with the property
that ae V and a*e V*. Consequently, a*v p = 1 for all pe V, and, therefore,
a = an (a*vp) = anp, so that a < p for all pe V. In summary, every
filter in D is principal and generated by an element in D**. Therefore,
D = D* so0 that D is a Boolean algebra in which every filter is principal,
which implies that D is finite.

3. The MacNeille completion. If X is a non-empty subset of a poset
P, we write X+ (X ™) for the set of all upper (lower) bounds of X in P and
call X normal if X = X*~. The MacNeille completion of P is the complete
lattice A#°(P) of all normal subsets of P in which the greatest lower
bound and least upper bound of {N,;ae A} < A (P) are

M N,and VN, =(U NJ),
aed

aed acd
respectively.

We write (a)| for {a}~ and call sets of the form (M) (a,)| comprincipal
ideals. aed

Epstein [5] has shown, by topological methods, that the class of Post
algebras is closed under the process of forming MacNeille completions.
Recently, Balbes and Dwinger [1] gave a categorical characterization
of the MacNeille completion of a Post algebra.

LEMMA 3.1. A subset N of a poset is normal if and only if it 18 a com-
principal ideal. More specifically, if N is normal, then

N = N{(a)}; ae N*}.

It is well known (cf. [4]) that the set of all ideals in a distributive
lattice L with 0 forms a complete pseudo-Boolean algebra J; the relative



172 R. BEAZER

pseudo-complement A4,*4, of 4,, 4, in # being {xe L;anxze 4, for all
ae 4,}.

LeMMA 3.2. The set of all comprincipal ideals in a pseudo-Boolean
algebra is closed wunder relative pseudo-complementation.

Proof. In fact, if 4, = (M (a,)} and 4, is any ideal, then
aed

A,%4, = N {(a*a,)}; ae A,ae 4,}.

For, if xe 4,%4,, then, for all ae 4,, there exists a be 4, such that
anx < b or, equivalently, z < a*b, and so x < a*a, for all ac 4, ae 4,.
If, conversely, x < a *a, or, equivalently, aAn x < a, for all ac 4, ae 4,,
then aAxe 4, for all ae 4,, so that ze A.x4,.

THEOREM 3.3. The MacNeille completion of a pseudo-Post algebra P
is a pseudo-Post algedbra.

Proof. We start by showing that

@) =V O Peladbn (i)

k=1 acd
Clearly, it suffices to show that if

8 = U { N (eer Dalaa)d),

k=1 aed
then

877 =N (a).
aed
If we 8, then there exists a k such that x < e;A Dy(a,) for all aec 4
and so, since e,A Dy(a,) < a,, it follows that a,e 8t for all ae A and,

therefore, S*~< (M (a,)}. For the reverse inclusion, suppose ! < a, for
aecd

all ae A4 and let weS*. Clearly, e S}, where
Sk = rl (ek/\ .Dk(ara))¢

and consists of those z ¢ P for which D;(x) = 0 for ¢ > k and D;(x) < Dy(a,)
for all 1 <<k, ae A. Therefore,

k
o, =V (65 Dy(l)) e Sy,

i=1
so that >, which implies that
n—1

uwz= 'V

k=1

@, ='f\—/l (esn Dy(D) =1

or, equivalently, le 8*~.
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It remains only to show that if Ne 4 (P) and operations .D, on A4 (P)
into itself are defined by

D,(N) = ﬂ{(Dk(a)N; ae N+}’

then [P.2]-[P.5] are satisfied. We prove only [P.3] leaving the easier
proofs to the reader.

Let M denote the set Dy (N, uD,(N,) and N the normal set
D, (N,)VD,(N,), so that N* = M*~+* = M*. We first show that N
< D,(N,VN,). Suppose ze N, so that # < u for all ue N*t; then we must
prove that

2 < Dy(a) for all ae (N,VN,)* = (N,uN,)*,

and for this it suffices to show that D,(a)e M* for all ae (N,UN,)*.
Now, if ze M, so that

ze (Dy(a))lU(Dy(az))| for all a,e NT, a,e N,

then (since (N,UN,)*< Ni, N;) ze(Dy(a))| and, therefore, D,(a)e M*
for all ae (N,uUN,)*. The reverse inclusion follows on observing that

(N,VN)*e N}, N implies Dy(Ny), Dy(I,) € Dy(N,VN,).

COROLLARY 3.4. A" ([D],) = [# (D)],.

An extension F of an algebra A is said to be essential if and only if,
for every algebra B, any homomorphism ¢: F — B whose restriction to
A is one-to-one is itself one-to-one.

An extension F of a lattice L is said to be meet-dense if and only if
every element in F is a meet of elements in L.

In [1] essential injective extensions in £, are characterized; they
are the MacNeille completions. A characterization of essential extensions
in &, is given in the following

THEOREM 3.5. An extension of a Post algebra i3 essential if and only
if it 18 meet-dense.

Proof. From the isomorphism of the categories £, and # it follows
that if P,, Pye &,, then P, is an essential extension of P, if and only if
G(P,) is an essential extension of G (P,). That P, is a meet-dense extension
of P, if and only if G(P,) is a meet-dense extension of G(P,) follows easily
from Theorems 2.2 and 2.4 of [5]. Consequently, it suffices to prove the
theorem in the category #. Let B,, B,e # and suppose B, is a meet-dense
extension of B,. We show that ¥ = {1} is the only filter in B, satisfying
VB, = {1}. If IV satisfies the condition and ze V, then, since z =
= A {d; de B} for some subset B of B, and V is a filter, it follows that
B < VnB, = {1} and, therefore, =1, so that V = {1}. Therefore,
B; is an essential extension of B,.
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Conversely, if B, is an essential extension of B,, then, since A4 (B,)
is injective in %, it can be embedded over B, into 4" (B;). It follows, since
A (B;) is a meet-dense extension of B,, that B, is a meet-dense extension
of B,.

4. Post functions and equations. A Post function of m variables on
a Post algebra P = [D], is one obtained from the constant functions

a(zy, ..., z,) = a and the identity functions f;(z,, ..., z,) = z; by a finite
number of applications of the operations A, v, *, D,, ..., D, _,.
A function f(z,, ..., z,,) on a Post algebra P is said to be congruence-

preserving if, for all Pe A p,
a; = by(®) implies f(ay, ..., 4) =F(by, ..., ) (D)
and isotonic on 8 < P if
a; < b; (a;,b;e8) implies f(ayy...,a,) < f(byy ..., b,).

Gritzer [8] showed that, for Boolean algebras, the property of being
congruence-preserving characterizes the Boolean functions. We generalize
this to Post algebras. Descriptions of congruence-preserving functions
on distributive lattices and p-rings may be found in [6] and [9], respectively.

THEOREM 4.1. If f(%y,...,x,) and g(x,,...,2,) are congruence-
preserving functions on a Post algebra [ D], into itself, then f = g identically
if and only if f and g agree on E.

Proof. The necessity of the condition is obvious. To prove the suf-
ficiency suppose f, g agree on Ebut p = f(@y, ..., @) % §(@1y +eey @) = ¢;
then there exists a ke n such that p, = Dy (p) # D,(q) = ¢x, and so there
exists a Boolean homomorphism A from D onto 2 distinguishing p, and g¢,.
The extension [A],: [D], —[2], is onto and distinguishes p and q. Now,
since f is congruence-preserving, we can define a function f, on [2], to
itself by

Fal(B1n(@1)y - oy [B1n(@m)) = [R1a(f (@15 -- s Zm))-

Therefore, since [h],(¢)y ..., [R].(€,_,) aTe the only elements in [2],
and f, g agree on E, we have f, = g, identically, which contradicts [A],(»)
# [h1a(9)-

A simple application of Theorem 4.1 yields the following

COROLLARY 4.2. The class 2, of Post algebras of order n is equationally
complete.

Proof. If p, q are polynomial symbols in &, and ¢ = p holds in some
algebra Pe#,, then p = q is an identity in the chain of constants of
P and, therefore, an identity in the class Z,.

THEOREM 4.3. A function on a Post algebra P into ttself is a Post function
if and only if it i8 congruence-preserving.
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Proof. The necessity is obvious. To prove the sufficiency let
f(zy, ..., ®,) be a congruence-preserving function on P into itself and let
g(2yy ..., x,) be the Post function

’yn{f(eila ooy €A k/=\1 Cik(mk)}’

where C,(z) = D}(z), C;(x) = D;(z)D} ,(x) (i =1,2,...,n—1) and the

join V/ is taken over all ordered m-tuplets (i, ..., ¢, € n™. For each tuplet
nm

(s eeesdm)e n™,
9(ejr -0 ) = V. {Fer e, )n A Gy (e},
and so, since

A Cuto) #0

only if 7, =j, (k =1,...,m) when it equals 1, it follows that f and ¢
agree on E and, therefore, f = g identically.

It is well known that a function on a Boolean algebra into itself is
isotonic if and only if it is a lattice function.

A D-function on a Post algebra [D], is one which can be obtained from
the constant functions and identity functions by a finite number of ap-
plications of the operations A, v, D,,...,D,_,.

THEOREM 4.4. A Post function 18 isotonic if and only if it is a D-function.

Proof. The sufficiency is obvious. To prove the necessity let
f(zyy ..., x,,) be an isotonic Post function and let g(z,,...,,) be the

D-function
m

"\1{‘ {f(ei17 sy ‘%’,,,)Ak/\1 Dik(wk)}'

For each tuplet (j,,...,Jn>en™,
g(ejl’ T ejm) = %{f(eiﬁ seey eim)/\ k/}lDik(ejk)}

in which the only non-zero terms are those where i, <j, (k =1,...,m)
and for these Dy (¢;) =1 and f(e), ..., e )<f(e,...,¢ ) Hence f
and g agree on E and, therefore, f = ¢ identically.

COROLLARY 4.5. A Post function is isotonic if and only if it is isotonic
on E.

5. Profinite Post algebras. If P = [D], is a Post algebra, then the
following are known to be equivalent (cf. [1] and [5]):
(i) P =~ n® for some set S.
(ii) P is complete and atomic.
(ili) D is complete and atomic.
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We give an alternative description of such algebras in terms of in-
verse limits.

If {P,; p.plae A} is an inverse system of algebras P, and homomor-
phisms ¢ 4: P, >P; (a,fecA,B<a), where A is a directed set and
¢: P —»>Lim P, is an isomorphism, then the homomorphisms

“—

Pa = PaOP: P_>-Pa7

where p,: Lim P,— P, denotes the a-th projection, will be called decom-
<

position homomorphisms. Clearly, given such a representation of P, we
can obtain one in which each ¢, and ¢, is surjective. An algebra having
an inverse limit representation in which no decomposition homomorphism
is an isomorphism will be called inversely reducible. It is easy to see that
every finite algebra is inversely irreducible.

We call an algebra profinite if it can be represented as an inverse
limit of finite algebras in which no decomposition homomorphism is an
isomorphism.

LEeMmA 5.1. If {[D,].; 9oplae A} i8 an inverse system of (pseudo-)
Post algebras, then {D,; Q(p.p)|ac A} 8 an inverse system of (pseudo-)
Boolean algebras and Lim[D,], = [LimD,],.

<~ <
The proof follows from the observation that Lim D, is the image of
Lim[D,], under the mapping D,_,. -
-~

THEOREM 5.2. An infinite Post algebra is profinite if and only if it is
complete and atomic.

Proof. It suffices, by the lemma, to prove the statement of the theorem
for Boolean algebras. To prove sufficiency, let B be a complete and atomic
Boolean algebra, o/ its set of atoms and # = {f,; ae A} the set of finite
joins of members of «/z. Then & is a sublattice of B with

V f e =1

aed
and, since B is infinite, # cannot contain 1. If we partially order the index
set A by g < a if and only if f, < f,, then A is a directed set indexing the
non-trivial congruences @, = O[{f,}*]in such a way that @, < P, when-
ever B < a. Consequently, the system of quotient algebras A, = B/®P,
and homomorphisms ¢.: 4,4, defined by ¢@.([*].) = [#]; whenever
B < a (where [z], denotes the congruence class mod®, containing =)
form an inverse system. We show that each A, is finite. The congruence
lattice o, of A, is isomorphic to the sublattice {@,}* of o5 under the
mapping @ —>P/D, (Pe{P,}T), where D/P,e A, is defined by [a],
= [b]p(P/P,) if and only if a = b(P). Therefore, the subdirect product
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representations of A, correspond one-to-one with the sets of elements
in the lattice {®,}* whose meet is @,. If

m
Jo =V a,, where a, e Ap,
i=1

then such a set is 6,, = O@[{a,}"] (1 =1,2,...,m) and, therefore, 4,
is a subdirect product of A4,/(6,/P.) gB/ﬁ’uit (t+ =1,2,...,m) which
shows, since 0, is maximal, that 4, is finite. Clearly,

m dja = wo
aed

(the trivial congruence) and, therefore, the correspondence ¢: B —Lim A4,
P —

defined by [¢(x)](a) = [x], for all ae 4, is an embedding of B in LimA4,.
-

It remains only to show that ¢ is surjective. Let ¢e Lim 4, and write

t(a) = [x,],; then it suffices to show that there exists a,n;e B such that
[z], = [x,], for all ae A. Now, zox,>f, is, by a direct calculation,
equivalent to

Jar @, < @ < for 2,

and, therefore, ¢ is surjective if and only if

\/ (fa/\ mll)< /\ (fa;xa)°

aed aed
An equivalent condition is that
Janw, < fg*xpy  for all a, fe A
or, again,
fanfp< wxws for all a,fe A.
On interchanging the roles of a, 8, we have the equivalent form
fanfy< womwg for all a,Be A.

However, f.Afge#, so that f,afs =f, for some ye A, namely y
= aA f. Therefore, ¢ is surjective if and only if x, = x4(®,.,) or, equiv-
alently, [®,],.p = [#s]s.p for all a, fe A. Finally, y < a, # implies that

[#,], = t(¥) = @lt(@) = pyal[®als) = [a],

and, similarly, [#,], = [%],, so that [%,],.; = [#3]..p foT all a, fe A.
Conversely, suppose that B ~ Lim B, is a profinite representation

of B. Each B, endowed with the discr;ﬁ—e topology is a compact Hausdortf
topological Boolean algebra and, therefore, so is the product algebra IIB,.
LimB, being a closed subalgebra of I[IB, is a compact Hausdorff

<
topological Boolean algebra. Clearly, Lim B, is order-complete and, there-

<«
fore (cf. [13]), completely distributive or equivalently atomic.

2 — Colloquium Mathematicum XXIX.2
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We remarked that every finite algebra is inversely irreducible. That
the converse is true in the class of complete Post algebras is sketched in

THEOREM 5.3. A complete Post algebra i8 imversely irreducidble if and
only if it is fimite.

Proof. Again it suffices to prove the statement of the theorem for
Boolean algebras. That there exists at least one proper dense element 4
in the pseudo-Boolean lattice of ideals of any infinite Boolean algebra B
follows from the analogue of Theorem 2.6 for Boolean algebras. It is easy
to see that 1 is the only upper bound in B of the elements in 4. Letting 4
play the role of the set # in the proof of Theorem 5.2, we get easily
that B is inversely reducible.
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