COLLOQUIUM MATHEMATICUM

VOL. XL 1979 FASC. 2

ON COALGEBRAS AND LINEARLY TOPOLOGICAL RINGS
' BY

LECH WITKOWSKI (TORUN)

Introduction. Throughout this note all coalgebras and algebras are
over a fixed field k. Radford [16], and Heynemann and Radford [7]
elaborate an application of topological methods for studying a coalgebra C
by treating its dual algebra C* as a linearly topological vector space. In [8]
Kielpinski et al. notice that, in fact, C* is a profinite algebra and following
the ideas from Gabriel [6] they show that the relation ¢ < C* settles a dual-
ity between coalgebras and profinite algebras. Then this duality appears
to be a special case of the duality for pseudocompact rings as studied
by Brumer [2]. The approach in [8] clears up the ring-topological back-
ground of the notion of coreflexivity of a coalgebra, introduced inde-
pendently by Taft [19] and Radford [16].

In the present note we observe that using, in particular, results from
the theory of strictly linearly compact rings, developed by Dieudonné [3],
Zelinsky [23], Leptin [9], Miiller [13], Warner [20]-[22] and others,
one may further clear up the ring-topological nature of such apparently
pure coalgebraic notions as locally finite and finite type coalgebras. In
particular, it enables us to obtain some new facts for coalgebras, as the
equivalence of the following four conditions for a coalgebra C:

(1) C is of finite type,

(2) J-adic and natural profinite topologies on C* coincide,

(8) J? is cofinite,

(4) J is left finitely generated and cofinite.

It settles a duality between coalgebras of finite type and algebras
profinite in J-adic topology. An extension of the duality in [8] upon
“dense coalgebraic pairings” as defined by Radford [16] is shown, explain-
ing results from [16] in new terms and the Faith method of annihila-
tors [4] is applied to coalgebras, altogether showing a general usefulness
of the ring-topological approach to coalgebras. There seems to be no
reference of this type in the coalgebraic literature yet.

We wish to thank Professor D. Simson for discussion and comments.
‘We acknowledge also our debt te the referee for considerable improvement
of the text.
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1. Preliminaries. Since all basic notions and results on linearly topo-
logical rings are easily available in the literature, we assume them known
referring to [1], Chapter 2 of [5], [11], Section 2 of [14], or Section 3 of [17].
Here we need the following useful results:

(i) Let B be a left strictly linearly compact ring. Then a left ideal I

is open if and only if it is closed and R/I is left Artinian (see [22]).

(ii) For a Hausdorff complete ring K the Jacobson radical J is closed
(Proposition 2.9 in [15]).

(iii) For a left linearly compact ring R its Jacobson radical J is open
if and only if R/J is Artinian (see [21]).

(iv) If M is Hausdorff left linearly topological module over a left
linearly compact ring R, then every finitely generated R-submodule of M
is linearly compact and hence closed (see [21]).

LEMMA 1. Let R be o left strictly linearly compact ring such that
NJ* = o.

n=>0
Then J? is open if and only if the topology of R and the J-adic topology
on R coincide.

The lemma follows from (i) and from Theorem 12 in [21].

We say that a ring R is left almost Noetherian provided any left ideal I
of R is finitely generated whenever R/I is left Artinian (see [7], Section 1).
COROLLARY 1. Let R be a commutative strictly linearly compact ring
such that
MNJ" = 0.
n=0
Then the following conditions are equivalent:
(i) B 48 Noetherian,
(ii) R is almost Noetherian and R/[J is Artinian;
(iii) the topology on R and the J-adic topology on R coincide.

For the proof apply Lemma 1, results (i)-(iv), and Theorem 12 of [21]
(see also Theorem 7 in [20]).

Remark. We do not know if this equivalence holds in the non-commu-
tative case (P 1047). Example 2 in [21] shows that (iii) does not imply (i),
it is not clear, however, if the algebra from that example satisfies (ii).
All three conditions are equivalent for non-commutative profinite alge-
bras (i.e. complete Hausdorff k-algebras with open two-sided ideals having
finite codimension over k) as follows from Theorem 4.1.1 in [7] and from
Theorems 1 and 4 of this paper.

2. Profinite duality. Here we gather some facts from [8]; coalgebraic
notation and terminology are those from [7], [16] and [18].
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Let C be a coalgebra and let B-Mod denote the category of all unitary
left modules (rings have units). It is known that rational C*-modules form
a closed subcategory C*-Dis of C*-Mod in the sense of [5] or [17], hence
there is a “natural” linear ring-topology on C* for which rational modules
are just all discrete C*-modules (see Proposition 3.3 in [17]). Its pre-
radical is the functor of taking maximal rational submodule ra (M) of any
C*-module M. Consider a linear topology on C* induced by the family
of all ideals of C of the form

D+ = {feC*; f(D) = 0},

where D runs over all finite-dimensional subcoalgebras of C. Since 0* /Dt
~ D* and C is a directed union of finite-dimensional subcoalgebras D,
(Theorem 2.2.1 in [18]), we have 0* = lim(C*/D}. Thus C* is a profinite
algebra. We call this topology the profinite topology on C* and denote it
by P£(C*).

ProroSITION 1. Left discrete C*-modules over C* with the profinite
topology are just all left rational C*-modules.

Proof. Let m # 0 belong to a rational left (*-module M. For the
associated right comodule structure w: M - M Q@C, let

w(m) = 2"”4@01
1

and take a finite-dimensional subcoalgebra C; of C containing ¢; for every
t=1,2,...,n Then
(0: m) > O n... nOE,

and so M is discrete (see [17]); conversely, take a discrete C*-module N.
It is enough to show that each cyclic submodule of ¥ is rational. For any
0 % m e N, since (0: ») > D+ for some finite-dimensional subcoalgebra
D < C, we have ‘

C*ID*+ — C*[(0: n) ~ C*-n.

But C*/D* ~D* is rational, and so is C*-n.
It is also known (see [18], p. 109) that there is a functor

°: Alg, — k-Coalg

from the category of algebras to coalgebras (A°is a subspace of A* consisting
of all linear k-functionals f such that Kerf contains a two-sided -ideal of
finite codimension, i.e. Kerf is open in a cofinite topology on 4, denoted
by Of(4) and induced by such ideals). The above-defined functor is right
adjoint to the functor

*: k-Coalg — Alg,.
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A linearly topological module M over a profinite algebra R is called
profinite if it is complete Hausdorff and its open submodules have finite
codimension (thus it is a special case of pseudocompact modules in the
sense of [2] and [5]). Let P, denote the category of all profinite k-algebras
with continuous k-algebra homomorphisms. For any R e P, the category
of all profinite left (right) R-modules will be denoted by R-Pf (Pf-R).
Denote by hom(M, N) the k-module of continuous homomorphisms in
Pf E. Observe that from Proposition 2.3 in [2] it follows that the functors

= Homgz(—, k) and § = hom(— k),

R-Dis :3; Pf-R,

define a duality, which for B = C* (algebra induced by coalgebra 0) is,
by Proposition 1, a duality between right C-comodules and right profinite
C*-modules. It is then easy to check that taking L(4) = 8(4,) for 4 € P,
we define a functor L: P, — k-Coalg and that we have

THEOREM 1. The functors
L: P, —k-Coalg and *: k-Coalg — P,
settle a dualsty.

Remark. If {I,}, are open two-sided ideals from a fundamental
system of neighbourhoods of zero in A € P,, then

L(A) = {ge A*; Kerg o I, for some a e A}.

3. Almost profinite algebras and dense pairings. A topological algebra A
with fundamental system of neighbourhoods of zero consisting of two-
sided ideals, such that the completion of A in this topology is a profinite
algebra, is called almost profinite (write A € AP;). For such an algebra 4
a linearly topological left A4- module M is called almost profinite (write

M e A-APf) if its completion Mis a profinite A-module. /
LeEMMA 2. For R € APy, if N is an open submodule of an almost pro-
finite R-module M, then M [N is finite-dimensional.
Proof. M ~ limM /N, where N runs over open submodules of M. Let
<
7 JIZ—>M/.N and ¢: M->M
be canonical. Define &: M /N — M /Kerrz by the formula
Dd(m—+ N) = ¢(m)+Kern.
From the density of ¢ (M) in M it follows that & is an isomorphism
of discrete modules, which — Kerz being open in a profinite module M —

completes the proof.
The following is the extension of the profinite duality.
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THEOREM 2. For any almost profinite algebra R there is a diagram with
commutalive exleriors and intertors:

Dis-R<—————— R-APf

*

4~| A

~ d all—

el|r 14
+ A * a *0

Dis-R< > R-Pf

5
such that the rows define dualities and the columns are formed of pairs of
adjoint functors defined as follows: ~ is the completion funcior, r(N) = N
treated as R-module for N eDis-R, § and ¢ are naturally induced by the
canonical
9: R>R, & =homgy(—,% and & =homp(—,%).

Proof. r is right adjoint to g and " is left adjoint to @ by standard
argument. The commutativity claim is obvious, while by the duality over
the profinite algebra ﬁ‘the rest is straightforward.

Let (C, A) be a dense pairing, i.e. a left non-singular pairing (of vector
spaces) of a coalgebra C and of an algebra A such that the induced map

r: A (" is a homomorphism of the algebras (see [16]). For a finite-
dimensional subcoalgebra D < C write

D* = {aeAd; (D, a) = 0}.

As in the case of D1 < C* one checks that D* arc two-sided finite-
codimensional ideals in A inducing some linear ring-topology on A which
we call the C-topology on A (write C-top(4)). For A = C* it is just the
profinite topology on C*.

PROPOSITION 2. For any dense pairing (C, A) the structural algebra
map v: A — C* induces an isomorphism of topological algebras A~C*
(completion in C-topology, C* with its profinite topology).

Proof. Notice that, for any finite-dimensional subcoalgebra D < C,
T induces an isomorphism

z: A/D*=>0*/Dt.

Now, Ais profinite for any 4 € AP, and applying the duality functor L
(Theorem 1) we get a coalgebra L(A) which together with A forms a dense
pairing K(A4) = (L(4), A) with the structural bilinear form

(y>t LA)x A - &

given by {(f,a) = f(q)(a)), where ¢: A4 -> A is standard. Thus we have
a contravariant functor K: AP, — D-P, where D-P denotes the category
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of dense pairings with morphisms being pairs
(€10, A"-2> A)
of coalgebra and algebra maps, respectively, such that
709 =fto7’
(A—>C* and A’ 0" are structural); for : A > B in AP, we have

K(h) = (L(h), h), where h: A — B is naturally indvced by h.

LeMMA 3. For any almost profinite algebra A the L(A) -topology on A
induced by the dense pairing K (A) coincides with the original topology on A.

Proof. Let {I,}, be a set of open two-sided ideals of A inducing the
topology of A. Put D, = {fe A*; Kerf o I,} and observe that D, are
subcoalgebras in L(ﬁ) = L(A4). In fact, since I, are two-sided and since
coalgebraic 4 in L(.i) is given by the formula A4(f) = f(—, =), for f € D,
we take g = f(a, =) € A* (a € A arbitrary). Since Kerg > I,, by symmetry
we have A(f)eD,®D,. Now, since I, is finite-codimensional (by
Lemma 2), we get

I,=(Kerf; for some f;e A*;
1

thus all f; are in D,. If a € D, then (D, a) = 0, whence {f;, a) = f;(a) =0
which shows that D < I,; the opposite inclusion is clear by definition.
Notice now that there are two natural functors

¢: k-Coalg =— D-P,
given by #(0) = (C, C*) with {¢, f> = f(c), and
F: D-P — k-Coalg,
defined by F(C, A) =C with F(f,g) =f for any morphism (f,g):
(0, A)—(C’, A’) in D-P. It is immediate that F is right adjoint to <.
Finally, we define a contravariant functor 7: D-P - AP, by T(C, A)
being an algebra A with C-topology, and by T'(f, g§) = g for any morphism
(f, ¢) in D-P. The main fact now is the following
THEOREM 3. (i) The functors K and T settle a duality between the cate-
gory D-P of dense pairings and the category APy of almost profinite k-algebras.
(ii) In the diagram
k-Coalg < ;, >D-P

Al

*||L KT

v A v
P ->A.Pk
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where " i3 the completion functor and j is a natural embedding, both the
interior and the ewterior are commutative. After rotating one or both columns
the diagram still remains commutative.

The proof is immediate by using Theorem 1 and Lemma 3.

Remark. An analogous method applied to the category of left
non-singular (C, 4)-module pairings (in sense of [16]) shows its duality
with A-APf extending the case of C-comodules and C*-Pf.

4. Coreflexivity. Recall that a dense pairing (C, 4) is said to be
coreflexive [16] if the canonical embedding

g: C== A° (o(c)(a) = (e, a))

is an isomorphism. A coalgebra C is called coreflexive if the pairing (C, 0%)
is coreflexive. It is just the coreflexivity of ¢ as defined by Taft [19].
For other definitions see [16]. Given any (C, A) € D-P with the structural
algebra map 7: A — 0* denote by 7-Cf(A4) the linear topology on A
induced by {r~!(I)}, where I runs over all two-sided cofinite ideals in C*
(i.e. 0*/I is finite-dimensional), and let Cf(A4) be the topology on A induced
by all two-sided cofinite ideals of A. Thus there is a sequence of increas-
ingly stronger topologies on A:

C-top(4) = 7-0f(4) 2 Cf(4).

Now we are ready to state two characterizations.

ProrosITioN 3. If (C, A) i3 a dense pairing, then the following condi-
tions are equivalent: ,

(1) (C, A) is coreflexive,

(2) C-top(4) = Cf(4),

(3) C is coreflexive and v-Cf(A) = Cf(4).

ProrosITION 4. If (0, A) i3 a dense pairing, then the following condi~
tions are equivalent:

(1) C 8 coreflexive,

(2) P£(C*) = Cf(C"),

(3) C-top(4) = =-Cf(4),

(4) for any I e v-Cf(A), ©(I) is open in the profinite topology on C*.

Remark. Before proving these facts notice that for the cofinite
topology on A the class of discrete modules consists precisely of those
A-modules for which all cyclic submodules are finite-dimensional, and so
from Proposition 3.3 in [17] it follows that O is coreflexive iff all cyclic
and, therefore, all finite-dimensional A-modules are rational (see Pro-
position 8.2 in [19]). Moreover, in Proposition 2.10 of [16] the word “closed”
may be replaced by “open”, since in an almost profinite algebra an ideal
is open iff it is closed and cofinite.
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Proof of Proposition 3. (1)=(2). For any cofinite ideal I in A4
we have

l )
I= OKerf,. for some f; e A*;

80 f; € A° = o¢(C) and, consequently, f;(a) = {¢;, a) for some ¢; € C. If D,
are any finite-dimensional subcoalgebras of C containing ¢;, respective-
ly, then Kerf; o D;", and so

»
I > NDi.
1

(2)=(1). If A is the completion of 4 in a C-topology, then, by (2),
A° = L(A) ~ L(C*) =~ C

with last isomorphisms as in Theorem 1 and Proposition 2, altogether
giving o. -

(2) < (3) follows from Proposition 4.

Proof of Proposition 4. (1)=(2) is obvious by (1) and (2) of
Proposition 3. It follows from (2) that any cofinite ideal I of C* contains
D', where D is some finite-dimensional subcoalgebra of ¢, thus
v (I) > v™(D*) = D* and, consequently, C-top(4) > z-Cf(4). Hence
these topologies coincide proving (3).

(3) =(4) =(2) arc immediate, since v(D*) = D*.

Implications (1)<-(2) of Proposition 4 were first proved in [8].

COROLLARY 2. If a dense pairing (C, A) is coreflexive, then the functor
Ra of taking the maximal (C, A)-rational submodule of any A-module ts
a torsion radical.

Proof. Rational (C, 4)-modules are just discrete A-modules, where A
is taken with its C-topology. Ra is a preradical for C-top(4) = Cf(4),
but the cofinite topology preradical is torsion.

We do not know, however, if the reverse is true (P 1048). From Corol-
laries 5 and 7 in [10] and from Theorem 3.4.3 in [7] it is immediate that
this problem has a positive answer for a cocommutative coalgebra over
algebraically closed field.

5. Artinian coalgebras and coalgebras of fimite type. Recall that
a coalgebra is said to be left Artinian if it has dec on left coideals. Now
we use an idea by Faith [4] to prove the following

PROPOSITION 5. Let (C, A) be a dense pairing. Then the following condi-
lions are equivalent:

(1) C is a left Artintan coalgebra,

(2) C* is a left Noetherian algebra,

(3) for every left ideal I in A there is a left ideal K < I which is finitely
generated and dense in the closure of I.
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Proof. (1)<(2) is clear by (iv) from Section 1 since the relation
I I+ settles the 1-1 correspondence between all left coideals of ¢ and
all left ideals of C* closed in the profinite topology of C* (see [19]).

(1)<>(3). First observe that C is a right A-module with the multi--
plication defined by

ca = 2(0(1), ay-C¢y, Wwhere A(c) = Z c1) ® C)-
Since £(c-a) = {¢, a) for any right coideal I = C, we have
{aed; Ira =0} =1=.

Now, let A.(C, A) denote the class of all right ideals in A of the-
form I, where I is a right coideal in C. Then the standard coalgebraic-
argument shows that I-a are also right coideals in C. Notice also that the-
class 4,(C, A) has acc iff C is right Artinian. Now it remains to apply
Proposition 1 of [4].

Coalgebraic notions such as coradical, coradical filtration, finite-
type, irreducible and locally finite coalgebras are defined in [7], Section 2.2.

Let C, =« 0, = ... be a coradical filtration on a coalgebra C. Recall
that for the Jacobson radical J of C* we have J = Oy and O, = (J"*!)*
(Proposition 2.1.4 and Corollary 2.1.5 in [7]).

Now, for an arbitrary topological ring R we say that R has the left:
special closure property provided I* is open whenever I is an open left ideal
of R. Notice that a coalgebra C is locally finite iff C* has the special closure-
property. It is also clear that C is a coalgebra of finite type iff J* is open.
in P£(C*).

LEMMA 4. A coalgebra C is almost connected if and only if C*|J = Oy
18 Artinian. )

Proof. If O; is Artinian, then, by Proposition 5, so is C,. If there-
was an infinite set I such that

Co = @Di
I

with D; distinct simple subcoalgebras of C, then throwing away one D;.
after another one could construct a decreasing sequence of subcoalgebras
Co o E, o E, > ...; thus I is finite, which comipletes the proof.

Now observe that we may extend some results from Sections 2, 4, 5-
of [7], avoiding a particular coalgebraic method of reducing general situ-
ation to the connected case by the application of “the associated connect-
ed coalgebra” (see proofs of Proposition 2.4.3 or Theorem 5.2.1 in [7]).

COROLLARY 3. Let R be a left strictly linearly compact ring such that-
NJ* =o.

n=0
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Then the following conditions are equivalent:

(1) J? i8 open,

(ii) R/J s left Artinian and R has the left special closure property,
(iii) the topology on R and the J-adic topology of R coincide,
(iv) R[J? is left Artinian.
For the proof apply Theorem 12 from [21] and our Lemma 1.
Combining Corollary 3 with Theorem 1 we get the following

THEOREM 4. The functors L and * defined as in Theorem 1 settle a duality
between all coalgebras of finite type and all algebras profinite in a J-adic
topology.

We have also the following

THEOREM 5. The functors L and * defined as in Theorem 1 settle a duality
between all Artinian coalgebras and Noetherian algebras profinite in a J-adic
topology. '

Proof. If A is a Noetherian algebra profinite in a J-adic topology,
then L(A) is an Artinian coalgebra of finite type and the L(A4)-topology
on 4 is just the J-adic topology by Proposition 5, Corollary 3 and The-
-orem 4. On the contrary, if ¢ is Artinian, then C* is Noetherian almost
-connected, and thus J is open left finitely generated. By Theorem 12 in [21],
all J™ are left finitely generated, hence closed, and

C* I = (4A™0,)*

is finite-dimensional since C is locally finite. Thus J" are open in the profi-
nite topology on C. Now, if D is a finite-dimensional subcoalgebra of C,
then D = A"C, for some n (Lemma 2.1.3 in [7]), and thus

D 5 (A"0p)t = I o I,

which proves that the J-adic topology and the profinite topology on C
-coincide.

COROLLARY 4 (see [7]). If C is Artinian, then it is of finite type. If O
18 cocommutative, then C 18 Artinian iff C is of finite type.

Now, for a dense pairing (C, 4) with the canonical 7: A - 0* we
«call the 7-J-adic topology the topology on A induced by ideals of the form
7~!(J™), where J is the Jacobson radical of C.

PROPOSITION 6. Let (C, A) be a dense pairing with the structural map <.
Then the following conditions are equivalent:

(1) C is of finite type,

(2) the C-topology and the =-J-adic topology on A coincide,

(3) ™Y (J*?) is open in a C-topology on A,

(4) T7Y(J?) s cofinite in A.

The proof is left to the reader.
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Remark. Since C* is a strictly linearly compact ring, by profinite
duality (Theorem 1) it is clear that in a cocommutative case any coalgebra
is a direct sum of irreducible coalgebras (possibly infinitely many; see [1],
Chapter ITI, Exercise 21, p. 112). If C is of finite type cocommutative,
then it is a finite direct sum of irreducible coalgebras (see Lemma 3
in [207).

Added in proof. Combining the above remark with Theorem 4.2.6
of [7], Theorem 6 of [10] and Proposition 4.3 of T. Shudo (4 note on coal-
gebras and rational modules, Hiroshima Mathematical Journal 6 (1976),
P. 297-304) it is easy to solve problem P 1048 positively for a cocommuta-
tive coalgebra over an arbitrary field. In a non-cocommutative case the
answer is positive for almost connected coalgebras, as follows from our
Corollaries 1 and 3, Theorem 4.2.6 of [7] and Theorem 4.6 of Shudo (op. cit.).
In particular, it implies that an almost connected coalgebra is of finite
type iff the profinite radical ra(-) is torsion. Moreover, combined with
results of B. I-Peng Lin (Semiperfect coalgebras, Journal of Algebra 49
{1977), p. 357-373), our discussion implies that a cocommutative (or
almost connected) coalgebra C which is either (left) semiperfect or pro-
jective in (right) C-comodules is also coreflexive.
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