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1. Introduction. An xn-dimensional Riemannian space is said to be
of recurrent curvature (cf. [8] and [13]) if its curvature tensor satisfies,
for some vector ¢;, the condition

Ryijr,1 = ¢ Bpijys

where the comma indicates covariant differentiation with respect to the
metric of the space.

In generalizing this concept Lichnerowicz [3] has called a Rieman-
nian m-space, whose curvature tensor satisfies

(1) Bpiik,im = Qim Bpijc

for some tensor a,;, a second-order recurrent space (briefly, 2-recurrent
space).

Spaces of such a type, i.e. satisfying (1) for a; # 0, have been con-
sidered mainly by Thompson [9]-[11].

Investigating conformally flat 2-recurrent spaces, Roy Chowdhury
discovered [6] that the trace of a; vanishes and the scalar curvature
of the space is zero. Using this result, Thompson was able to prove [12]
that every conformally flat 2-recurrent space reduces to a space of recur-
rent curvature.

As a generalization of the concept of a second-order recurrent space,
Roy Chowdhury [7] initiated investigations of n-dimensional Riemannian
spaces whose Ricci-tensors satisfy relation of the form

(2) Rij,lm = Ay Rz‘j

for some tensor a;. Spaces of this kind, called second-order Ricci-recurrent
or, briefly, 2-Ricci-recurrent spaces, are evidently generalizations of so
called Ricci-recurrent spaces [4], i.e., of Riemannian n-spaces characterized
by the condition

(3) 'Rij,l = O,R,-j.
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According to Chaki and Gupta [2], an n-dimensional (n> 3) Rie-
mannian space is called conformally symmetric if its Weyl’s conformal
tensor

1
(4) Chijk = -Rhijk o (9;; R" — g B+ On Ry — 5;"Rik) +

R
—(8"q..— &q.
+ ('n,——l)(n—2) (kgw ]gﬂc)

satisfies
(5) Ch’ijk,l = O.

It follows easily from (4) and (5) that every conformally flat as well
a8 every symmetric (in the sense of E. Cartan) Riemannian n-space
(n > 3) is necessarily conformally symmetric. Converse of this, as we
shall show in a subsequent paper, is in general not true.

Conformally symmetric Ricci-recurrent spaces have been studied
by Adati and Miyazawa [1]. Their main result is the following:

If the Ricci-tensor of a conformally symmetric space satisfies (3)
for a non-zero vector ¢;, then the following cases occur:

(a) the space is conformally flat and recurrent (of recurrent cur-
vature),
(b) the space is symmetric in the sense of Cartan and R; = 0,

(c) the scalar curvature vanishes and the recurrence vector c¢; is
null.

The present author established [6] that if the Ricci-tensor of a con-
formally symmetric Ricci-recurrent space with non-vanishing vector ¢; is
assumed to be non-zero, then the scalar curvature of the space vanishes
and the vector of recurrence ¢; is null.

The purpose of this paper is to obtain an analogical result for con-
formally symmetric 2-Ricci-recurrent spaces. Namely, continuing Roy
Chowdhury’s investigations, it will be proved that a conformally sym-
metric 2-Ricci-recurrent space reduces to a Ricci-recurrent space with
the necessarily vanishing scalar curvature.

We emphasize that our definition of a 2-Ricci-recurrent space assumes
a; # 0 # R, at every point. '

2. Preliminary results. First we shall obtain a result on general
conformally symmetric spaces:

LEMMA 1. The curvature temsor of a conformally symmetric space
satisfies the equation

(6) R, Ry +R, R+ B Ry = 0.
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Proof. Differentiating (4) ccvariantly, summing for #,! and taking
into account (5) and the wcll-known formulas

(7) Rrijk,r = Rij,k‘—Rik,j’ Rrj,r = %R,jy

we obtain

Ry.—Ry;= 2(n—1) (B 9;i— R ;0:u),

or, by a covariant differentiation,

(8) Rij,kl_Rik,il = m (R,klgij_R,jlgik)'

It can be easily verified that (8) gives
Rik,lj _Ril,kj =

2('n,——1) (R,ljgik—R,kjgil)’

Ry e —Riju = 2(T—T) (R,jkgil'_R,lkgij)7

which together with (8) again implies
(9) (Bij,ia —Bij ) + (Rigty — By 1) + (R e — R p5) = 0.

Applying now the Ricei identity to (9), we find
R R 3 +Ry R jjy+ Ry R+ R, Rrklj +Ry R jj.+ Ry, Ry = 0.
However, the last equation leads immediately to (6) in view of
R, R;y+R, Ry +R, R, =0,

which. follows easily from Bianchi’s identity. The lemma is proved.
From now on we assume that the considered conformally symmetric
space is 2-Ricci-recurrent.

LeEMMA 2. The Ricci-tensor of a conformally symmetric 2- Ricci-recurrent
space satisfies the condition
n o 1
10 R,R)=——RR,,— —— R%g,,.
(10) e T g 1) P A1) T

Proof. As an immediate consequence of (2), we have

(11) 'R,lm = Ra,m.
This, together with (2), reduces (8) to the form
1 1
(12) Rq—m Rgi;)am = \Bu— é‘(ngik @1
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Transvecting now (12) with R"p and using the relation
(13) a,.mR'j = %Ra,-m,
which follows easily from (2), (7) and (11), we find

(19 = R(R,-k—

1
2 Ry "") ot = (R"Rrp_ 2(n— 1)RR"”) -

2(n—1)

But it follows from (12) that

1 R|R 1 R 1R R 1 R

J— y ——— . la —_— i — ——— .

2 T om—1) Jie) Ipt = 3 T an—1) Gin ) Fa
Substituting the last formula into (14), we get

1

(R"'R'p " 2(n—1)

1 1
RRip) A = D) R (Rip— —2(n~ 1) Rgtp)aku

which, evidently, is equivalent to (10).
In what follows we need the following result of Roy Chowdhury

(cf. [7], Theorem 1 and equations (1.6), (2.3)):

LEMMA 3 (Roy Chowdhury). The tensor of recurremce of a confor-
mally symmetric 2-Ricci-recurrent space ts symmetric and the Ricci-tensor
satisfies the relations

(15) R,;R yn+R\Fy, =0,

n—2

RQg;+ 2(n—1)

( 16) QR‘IJ Raﬁ y

T 2(m—1)
where @ = g”ay;.

LeEMMA 4. The curvature tensor of a conformally symmetric 2-Ricci-
-recurrent space satisfies the relation

(1 7 ) RR"IJ Rrﬂd == R.R,.l Rrkip .

Proof. Transvecting (6) with R, and using identities R, = Ry
= —Ry,; = Ry, we obtain the equation

R, B’y R gy + Ry Ry R, + B Ry By = 0,
which, because of (15), yields
(18) R R R 4y —R By R, —R" Ry R®,; = 0.
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Transvecting now (18) with R, and applying (10), we find

2—(7;"71) R(RL Ry By — B By By — By R T o) —
i Byt~ TR o) =
whence
%ﬁ:l—) B(B B s Brips — By Bon B iy — By Bt Bprs) —
h 74(’ﬂrl——'l) R (B B iy — R By — By R i) = 0.

But the last equation, in virtue of (15), can be written in the form

n r ” r 3
2(—n:1—) R(R p-Rstn'ks —R kRstspir —R mRskR pn) -

~ T B B Rt B+ By Bi) = 0,
which, because of (6), leads immediately to
(19) R(R",R°, Ry, —R" R, R°);, — R, Ry R° ;) = 0.
Comparing now (18) and (19), we easily obtain
(20) RR",R°,R,;, = RR,,R°, R",.
Since R, = Rgpirs
(21) RR",R°|R,;;, = RR"\R° R,,,.
But (20) can be written as
RE" R’ D R,y = BR, E° erkizr
The last equation, together with (20) and (21), gives
RR, R E'yy, = RE, R, Ry,
whence, by substituting now (10), we get

n
—  R}R,, Ry, —R,R;,) =
2(%—1) ( D tkl rl kzp) 4(7&—1)

Since R,;; = Ry,, the last relation yields immediately (17).

Ra (Rpikl —leip) .

3. Main results. Now we may proceed to the main results of this
paper.

THEOREM 1. The scalar curvature of a conformally symmetric 2-Ricci-
-recurrent space is zero at every point of the space.
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Proof. Transvecting (12) with a"p and using (13), we obtain
(22) Ra_,,-pakl —_ Rakpaﬂ.

Since a; is symmetric and a; # 0 (at every point) by assumption,
there obviously exists a real vector field v’ such that the condition v"v*a,,
= ¢ (¢ = +1) holds in some neighbourhood U of an arbitrary fixed
point P.

Therefore, transvecting (22) with v*¢' and putting ¢; = v"a,;, we
find in U

(23) Ra;, = eRc;c,,.
On the other hand, it follows easily from (16) and (17) that

n—2 .
E(n —1) E (arpRrikl - a"ZR kip) = 2 (,n —1) RzQ (leip _Rpikl) ’
whence, because of Ry, = R,;;, we get

.R2 a,,p Rrikl = .R2 a,.l Rrkip .
But the last equation together with (23) gives in U
(24) 122 Cp c,..Rrikl = R2 010,. Rrkip .

Since ¢’c, Ry, = 0, (24) implies R’c,c’c, R";, = 0, whence, using (24)
again, we have at P

(25) chscsCrRr.ikl = 0.

It follows easily from (23) that the assumption ¢"¢, = 0 leads to
RQ = 0, which, in view of (16), implies R = 0. If, accordingly to (25),
the equation ¢,R"y; = 0 holds, then, by contraction with ¢*, we find
¢,R", = 0. Transvecting now (10) with ¢’ and making use of the last
relation, we obtain easily Rc, = 0. Therefore, in all cases B = 0. Since P
is arbitrary, our theorem is thus proved.

COROLLARY 1. A conformally symmetric 2-Ricci-recurrent space with
definite (positive or megative) metric does not exist.

Indeed, as an immediate consequence of (10) and Theorem 1, we
have R, R", = 0, which, by contraction with ¢*?, yields R”R,, = 0, and
in consequence R;; = 0 — a contradiction with the definition of a 2-Ricei-
-recurrent space.

Remark. If a Riemannian »n space (n > 3) satisfying (2) and (5)
is analytic, then — as follows immediately from (23) and (25) — The-
orem 1 and Corollary 1 both remain true under only assumption that
a; and R; are not identically vanishing tensor fields.
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THEOREM 2. Conformally symmetric 2-Ricci-recurrent spaces are Ricci-
-recurrent spaces.

Proof. As one can easily verify, in view of Theorem 1, equation (12)
can be reduced to the form

(26) agRy; = ayRy.

On the other hand, as an immediate consequence of

Ryi—Ry,; = m (B r9:i—R ;9:%)

(see proof of Lemma 1) and Theorem 1, we have
(27) Rijx = Bax; -

Using (26), the symmetry of a; and the conditions B =0 and
a; #0 # R;, one can verify (see [12], proof of Theorem 1) that there
exists locally a real null vector field 4; such that

(28) ‘R‘ij = GAZA] 3Ild aij = CA{A]-,\

where C # 0 and ¢ = +1.
Moreover, from Thompson’s considerations (see [12], p. 509-510)
it follows that if for a Riemannian space relations (2), (27) and (28) hold,

then the space is necessarily a Ricci-recurrent one. This remark completes
the proof of Theorem 2.

Combining Theorem 2 with Theorem 1 we have

COROLLARY 2. Ewvery conformally symmetric 2-Ricci-recurrent space is
a Ricci-recurrent space with the mecessarily vanishing scalar curvature.
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