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ON BOHR CLUSTER SETS

BY

GORDON S. WOODWARD (LINCOLN, NEBRASKA)

In this article* we construct an infinite set E < Z, the integers,

which cannot be partitioned into two infinite subsets with mutually
disjoint closures in the Bohr compactification Z of Z. That is, the set of
Bohr cluster points is connected. This question was originally posed by
S. Hartman in 1970 and appeared later in [2]. It is equivalent to: given
an infinite £ < Z must there always exist a discrete measure y on T such
that the sets B, = En(u)~'(0) and E, = En(uz)~!(1) are both infinite and
partition E? In this form, but without the word “discrete”, the question
was posed a few years later by M. Bozejko and was recently solved by
McGehee (see [1], p. 226). He showed that such measures always exist by
constructing an appropriate continuous x using Riesz products whenever
E has the property that either EnS or E\S is finite for every 8 in the
coset ring of Z. Sets F of the form {j!k: 0 <k < N;,1<j} are of this
type, yet at the same time they “approximate” subgroups of Z. Our set
is one of these. The idea is to choose N; — oo rapidly enough so that the
joint behavior of any finite collection of characters on E reflects their
behavior on Z close enough to obtain the connectivity required.
. The author is greatly indebted to O. C. McGehee and T. Ramsey
for pointing out this problem and for the many conversations concerning
it, and to S. Hartman who encouraged the author through an earlier
somewhat erroneous version of this paper. This result has been independ-
ently announced jointly by Y. Katznelson and T. Ramsey [4].

We begin with notation. Let T" denote the n-dimensional torus
[0, 27)" ~ R"/2=xZ"™ under the quotient Euclidean metric

It = inf{||t —2rall,: a € 2"},

where ||-|l; denotes the usual Euclidean metric on R", Let B(e) denote

* This work was partially supported by NSF Grant MCS77-02753.
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the open ball of radius ¢ in T" (the dimension of B will be clear in the
context). For t eT" and M > 0 define

R(t, M) ={kt: 0<k< M,%kecZ} and R() =R(t, o).

Given 2,y € R" and A < R", we write z-y for the usual inner product,
A = {®-a: acd}, and AL = {: -4 = {0}}. In particular, if H = T"
is a subgroup, then H' < Z" is its annihilator. If H < T™ is a closed sub-
group, then the component of H which contains zero is a subgroup which
will be denoted by H,. Note that H, ~ T* for some k < n. Define dim (H)
= dim(H,) = k. A subset K c H is e-dense in H if H =« K+ [B(e)nH,].
Note that this implies that K occurs quite frequently in each component
of H and is considerably stronger than H < K + B(¢) for most H. We use
the usual characterization of basic Bohr open sets in Z. That is, given
o =(%),a=(¢)eT", and 8 = (§;) € 4" = [0, 1)*, let

U(rya,8) ={keZ: |kr;—al < 6 for all i}.

The collection of all such sets forms a base for the relative Bohr topo-
logy on Z. This is precisely the weak topology generated by all the maps
t = (t1y ..., ) €T for 1 <1 < oo which map Z — T by k > tk.

The first lemma uses a classical tool from the theory of Rajchman
sets (see [3], p. 68) and is no doubt well known.

LEMMA. Let ¢ > 0 and let » be a positive integer. Then there is an r > 0
such that R(t) i3 e-dense in T™ whenever t € T" and

inf{|lally: a € B(t)t, a # 0} > r.

Proof. Denote the algebra of absolutely converging Fourier series
on T by A(T™). Let 0 < f e A(T™) with suppf < B(g). Choose r > 0 so
that

(X 1F(@)I: llally > r) < £(0) = lfil-

Now suppose ¢ e T" and that R(f) is not e-dense in T". Then for some
S 1_"‘_ we must have [y + B(e)]nR(t) = @. Denote the Haar measure
on E(t) by u. Then
0 = [f,dp = D f(@)e*Vis(a) = Ifla+ D f(a)eVji(a).

,a#0
Since u is the characteristic function of R(f)+, our choice of » implies
that #(a) = 1 for some a such that 0 < |lal|y < 7.
Note that this lemma implies immediately that for each & > 0 there

is a finite set C(T™, &) of (» —1)-dimensional closed subgroups of T™ such
that either E(?) is e-dense in T™ or ¢ € 8 for some 8 € C(T™", ¢), for all t € T".
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The lemma works equally well for any connected closed subgroup
H of T™ with dim(H) = n and, with slight modifications, for any closed
subgroup H of T", as the following corollary shows:

COROLLARY. Let ¢ > 0 and suppose H is a closed subgroup of T" of
dimension k. Then there are a finite collection C,.(H , &) of proper k-dimensional
subgroups of H and a finite collection C,_,(H,e) of (k—1)-dimensional
subgroups of H such that R(t) is e-dense in H for each t belonging to the set
H\|J{SeC,(H,&e)V0,_,(H, &)}.

Proof. The quotient group H /H, is compact and discrete, hence finite,
and mH, = H, for any m € Z. It follows that H ~ H,®D for some finite
group D in H with order, say, m. Fix such an isomorphism and let C,(H, ¢)
be the collection of those subgroups of H that correspond to H,PD’ for
some proper subgroup D’ of D. If ¢t e H does not lie in any of these sub-
groups, then ¢ (mod H,) must be a generator of H/H, Write t = t,+1,,
where t, € H, and mt;, = 0. If R({,) is (¢/m)-dense in H,, then

{It: 1 =j (mod m)}+[B(e)nH,] = Hy+jt,.

On the other hand, if 7, is not (¢/m)-dense in H,, then ?, belongs to
a group in C(H,, ¢/m) and ¢ must be a member of some group in C,_,(H, &)
= {S+D: 8 € C(H,, ¢/m)}.

We are now in a position to prove our main result.

THEOREM 1. Let n be a fized positive integer. Then there is a sequence
{IV,} such that for each t € T" and each ¢ > 0 there are a connected set 0 < T"
and a finite set F c B = {jlk: 0< k< N;,1<j< oo} such that

{it: 1e ENF} < O+ B(g/2) = {lIt: l e ENF}+ B(e).

Proof. Given a closed subgroup H <= T" of dimension %, 0 < k < n,
set C(H, 8) = C(H, £)UC,_,(H, &). It follows from the proof of the corol-
lary that there is a finite, partially ordered (by set inclusion) family €(H, ¢)
of subgroups of H which satisfy

(i) H €e€(H, ¢),
(i) Se¥¢(H,¢) =>C(8,¢) c ¢(H, ¢).
For each 1 (0 <1< dim(H)) let

€ (H,e) ={Se¥(H,e): dim(8) = 1}.

Let 0(H,¢) denote the set of components of elements in %(H, s)
and let w(H, &) > 0 denote the minimum distance between disjoint ele-
ments of 0(H, ¢). Since 0(H, &) is a finite collection of compact sets,
for each 6 > 0 there is some ¢ = o(H, &, ) > 0 such that if K, L € 0(H, ¢),
then

(K + B(0))n(L+ B(o)) = (KEnL)+ B(J).
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Now we fix our attention on H = T" and proceed to choose the N,.
Let {e;};>, be a positive sequence bounded by 1 such that j!e; decreases
to zero. Note that we can assume, by taking finite unions if necessary,
that the ¢ (T", ¢) are increasing with j. Set

wj+l == w(T“ 3j+1) alnd. 6f+1 = m.iIl{O'(T" 81_{_1, wj+1/2) £j+1/2}

Note that 20;,, < w;,,. Let A#y(l) = | J{8 e €,(T", &)} for 01 <
and set N,(0) = LCM{order(S) Se%o(T" &)}. Let

K;(0) = o4(0), K, (1) = oA;(1)\[;(0)+ B(o,1/§!2N,(0))].

Bach h € K;(1) must have R(h) at least ¢-dense in some § = §;(h)
€ €,(T", ¢). Choose any particular §;(h) if more than one exists. Hence
there are N and a neighborhood U of h in § such that E(z, N) is ¢-dense
in § for each z € U. Since SnK,(1) is compact and ¢,(T™, ¢;) is finite,
there is some N,(1) > N,(0) such that R(h,N,(l)) is g-dense in §;(h)
for each h e K,;(1). Similarly, set

E;(2) = o3(2)\[o;(1) + By, /i1 22 N,(1))]
and pick N,(2)> N,(1), and continue, eventually obtaining
K;(n) = X ;(n)\[A;(n—1)+ B(o;4, /! 2" N;(n—1))]

and N;(n) > N,(n—1) from which it follows that R (k, N,(n)) is ¢-dense in
8;(h) for some S;(k) € €,(T™, ¢;), and each h € K;(n), realizing of course
that at this n-th stage S;(k) = T™. Set N; = N,(n).

We now show that {N,} satisfies the assertion of the theorem. There
are two cases. Let ¢ € T". Either ¢ € K;(n) for infinitely many j’s or not.
If so, set 0 =T" and F =@. Let ¢ > 0 be given and choose j so that
teK,(n) and jle;<e. Then R(f, N;) g-dense in T" implies that
R(j!1, N;) is (jl¢;)-dense in T™. Hence T c {li: | € E}+ B(e). Thus we can
assume that ¢ ¢ K,(n) for some j, >3 and all j > j,. Choose any &> 0
and fix k > j, so that 2k!¢, < &. For each m > k, our construction yields
an l,,0<1[,<mn, and a point A, € K, (l,) which is the orthogonal pro-
jection of ¢ onto some 8, € Cin (T” &n) With R(h,,, N,,,(Zm)) &n-dense
in 8,, and with ¢teh +B(a,,,+1/m'2 mN,.(ln)). Actually we obtain b,
through a finite succession of orthogonal projections

t—>t, ) >t s —...>h,,

where t, ;€ A ,(n—i) and ¢,_;€t,_;_,+B(0,,,/m!2" N, (n—i—1)). In
particular,

R(m!t, Nm(lm)) < R(m!hm7 -Nm(lm))+B(Gm+l) < m!Sm+B(om+l)'

Moreover, R(m!h,, N,(l,)) is (m!e,)-dense in m!S,. Recall that
S+ B(0,,,) 18 & disjoint union of open “bands” about the components
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of 8,,. Indeed, our choice of o, ., insures that if K, L € 0(T", ¢,,,) and
if (K+B(am+1))n(L+B(am+l)) #0, then KnL #@. It follows that
if §, denotes the component of 8, which contains h,,, then 8,08, +1
# @. Thus the set (S, US,,,+1) is connected for any integer !. Similarly,
for any j > m and for any ! the set 1(§,,U ... US;) is connected. Set m = k
and choose j >k so that order(S;/(8y).) djvides jl. Then the set

FIRLU ... UR)) = J1I(8k)eUSi Y ... U]
is connected for any l. Fix such a j (», k, j are now fixed). It follows that
= Um![(8)eUBki1 V- .. USLT =3!(81)oUSk1V ... US)U(Um!8,)
m=jl<l<oo m>j

is a connected set. Put

F={mll:1<m<k1<I<N,}V
um!l: k<m<j,1<I< Ny(l,), m!lS, €58,V
uim!l: k< m<j, Np(ln) <1< N}

As the notation suggests, C’ must be modified to obtain the required
set C. The problem is that usually N,, > N, (l,,) so that m!li is not close
to m!lh,, throughout the segment 0 <1< N, . To adjust for this let m > j
and consider the sets

M, = [m!lt: vV, (L) <1< min((r+1) Np(ln)y N}

for 0<r<r, =[(N,—1)/N,(l,)]. Since ¢t = t,+ h,,, where ¢, belongs to
B(op, +1/m' 2’mN n(lm)), and since R(m!h,,, N,,(1,,)) is (m!e,)-dense in m! 8, ,
the set [ M, —m!rN,, (1)t + B(0,,4,)]1nS,, must be (m!e,)-dense in m!S,
for 0 <r < r,. Hence we consider the sequence

m! 8y, m!S, +t1, ..., m! 8, +(r,—1)¢,,

where t, = m!N,, (1)t € B(0p11) © B(ey,1/2) = Ble/(m+1)!2). The cor-
responding components in adjacent elements of this sequence are within
O,y Of each other; hence we can connect them with line segments of
length bounded by o,,,. Let C,, be the set m!S,U ... U(m!8, + (r,—1)t)
together with these connecting segments. Then C,, = R(m!t, N,,)+ B(e).
Moreover, since

m! 8y, + (r, —1)8, + B(e/2) o m! 8+ (r, —1) 8 + B(op ) @ M,
we have C,,+ B(¢/2) o R(m!t, N,,). Put
¢ =0U(U0C).

m>j

Note that C is connected since each component of C,, contains a com-
ponent of m!S, < C'.
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It remains only to show that C and F satisfy the final condition of
the theorem. We have already shown that for m > j

R(m!t, N,,) = C,,+ B(¢/2) =« R(m!t, N,)+ B(e);

note that F contains none of the indices used here. For k << m < j the
set R(m!h,, N, (l,) is (mle,)-dense in m!8,, which, by the definition
of “e-dense”, implies that the set

R(m! byy Ny (1)) 05! 8y = {m!lhy,: m fixed, m!l € EN\F, N,}

is (m!e,)-dense in j!8,. Since t e h,,+B(o,.,/m! N, (1, ), we conclude
that

{m!lt: m fixed, m!l e ENF,I< N,} < j!8,,+ B(¢/2)
c {m!lt: m fixed, m!l € ENF,I1 < N, }+ B(e)
Taking the union over ¥ < m <) and then over m > j, we obtain
{lt: e ENF} <« C+B(e/2) = {lt: | € ENF}+B(e).

The sequence {N,;} = {N,(n)} in Theorem 1 can be replaced by any
increasing sequence M; > N,. In particular, for each T" Theorem 1 pro-
duces a sequence {N;(n)};. Define M; = max{N;(n): 1<#<j} and
observe that the following corollary is an immediate consequence of
Theorem 1 and its proof.

COROLLARY. There 18 a sequence {M;} such that for each n, each t € T",
and each € > 0 there are a connected set C = T™ and a finite set F < E ={j!k:
0<k< M;,1<j< oo} such that

{lt: 1e ENF} « C+B(¢/2) = {lt: 1 € ENF}+ B(e)

THEOREM 2. Let {M,} be as in the corollary. Then the set of Bohr cluster
points in Z of the set

E={j:0<1I< M;,§=1,2,...}

18 connected.

Proof. The Bohr group Z can be continuously and isomorphically
represented as a subgroup of 7' by taking the closure B in T of the range
ofp: Z >T° by (p(K)); = tk and observing that ¢ extends to a continuous
isomorphism ¢': Z — B. Since B is also compact, ¢’ is bicontinuous. To
say that the set of cluster points to E in Z is not connected is to imply the
existence of two infinite subsets A, E\A of E with disjoint closures 4,
E\A in Z. Hence K = ¢'(4) and L = ¢'(ENA) are disjoint compact
sets in B; consequently, there are open sets U, V in B with disjoint closures
such that L < U, K < V, and U, V are finite unions of basic Bohr open
sets. Hence there is a finite-dimensional projection =x: T® —T" such
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that U= n"'#n(U), V= n"'n(V), and therefore n(K U L) is not connected
in T". Let t = (t,, ..., t,) denote the coordinates of projection by =». Then

n(K) ={t: le A} and =(L) = {lt:leBE\A}.

Let 3¢ > 0 denote the minimum distance between these two sets.
Now apply the corollary to Theorem 1. There are a finite set ¥ and a con-
nected set C = T" such that

(t: 1e ENF} < C+ B(e[2) < {U:1e ENF}+B(e),
which implies that »(K) and = (L) can differ by at most 2¢, a contradiction.
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