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INTERPOLATION AND EXTENSION
OF LIPSCHITZ-HOLDER MAPS ON O, SPACES
BY

CHARLES E. CLEAVER (KENT, OHIO)

1. Introduction. A map F from a subset D of a metric space (X, d,)
to a metric space (Y, d,) is said to be Lipschitz continuous of order a and
belong to the class Lip (D, Y, a) provided

dy(Fzy, Fa,) < [dy(2,, @,)]" for @, 25¢ D.

The statement that “e(X, Y, a) holds” means that, for arbitrary
D c X, every element of Lip(D, Y, a) can be extended to a map in
Lip (X, Y, a).

Recently, interpolation theorems have been used in [1], [4] and [7]
to prove extension theorems about Lipschitz-Holder maps on function
spaces. In this paper, a similar type interpolation theorem is proved which
can then be applied to the C, spaces defined below.

Let H be a Hilbert space and T a compact operator on H. Then |7
is defined to be the unique positive square root of 77" which is also compact.
Now, let y; > us = ... > 0 be the eigenvalues of |T'|; then for 1 < p < oo

we define
1T, = ( 3 )™
Nm]l
The space O, consists of all compact operators T such that |7, is
finite. The number | T, will be the operator norm of T. For p = 1, the
space is sometimes called the irace class or the nuclear operators. For
details concerning the O, spaces, see [2], [3] or [6].

2. Main results. Let X,, X,,..., X, be Hilbert spaces and P
= (P1y P2y +-+) Pp) a0 n-tuple of real numbers with 1 < p; < oo. Define
@0p, (X;) to be the linear space of all vectors T' = (T,,T,,...,T,),
Tie Cp,(Xy), with the usual coordinate-wise addition and scalar multi-
plication. In this space, introduce the norm

fn
1T0p, = { D 1Tall 22}
k=1

where 1 <7 < oo and A = (45, ...y 44} i8 an n-tuple of positive weights.



84 C. E. CLEAVER

In case r = oo, write

ITlp,0 = max |Tylp,.
1<ksn

Denote by Cp, (A) the set of T such that |T|p, is finite. If P’ =
(D1, Pgy -5 D), Where 1/p,+1/p; =1, then for SeCp (1)

L(T) = tr 8T = Z(trSka)lk

defines a bounded linear functional on C,,. Here tr denotes the trace
of the operator. For T Op (1),

(2.1) |\ Tlp,r = sup | tr 8T,

where the supremum is taken over all finite-dimensional vectors belonging
to Cp . (cf. [2], p. 1098). A vector in Cp, is finite dimensional provided
each component has finite-dimensional range.

Suppose Y,, Y,,..., Y, is another collection of Hilbert spaces,
7 = N1y -y M) With 7; >0 and @ = (¢, @2y .-+ @)y 1 < ¢; < oo. Define
Co.s(n) in a similar manner and consider linear maps taking finite-dimen-
sional vectors of Cp, into the finite-dimensional vectors of Cg ;.

THEOREM 2.1. Suppose 1 < P;,Q; < 00,1 <7y, 8,< o0, ¢ =1,2, and
1/P =(1—1)[Py+1/Py, 1/Q = (1 —12)[Q,+1/Qsy 1]r = (1—1)[ry+1[ry, 1[s =
(1—1t)/s,+t/ss. Let L be a bounded linear operator taking the finite-dimension-
al operators in Cp,,, into the finite-dimensional operators in Cy, o, i = 1, 2,
with bounds M, and M,, respectively. Then L takes Cp, into Cq, and

IZ(T)lg,s < MY *Mi|T)p, for TeCp,.

Proof. In explanation of the notation, 1/P = (1—1%)/P, +t/P, means

P = (pyy +ov3 Pu)y P1 = (P11 P12y +++y P1n)y P2 = (D21y +-+y P2n) and 1/p,
=1—0/pu+t/Pas b =1,2,...,m
It follows from (2.1) that all we have to show is that

(2.2) | tr L(T) 8| < M}~*M}

for finite-dimensional operators 7' and S satisfying |T|p, =1 and
I8]lg,# = 1. Choose such a T and 8 and write T} = |T}| Uy, 8 = |8,/ Vy,
where U, and V, are partial isometries obtained from the polar decompo-
sition. If an operator H has the canonical representation

H = 2}-:(': Pi) @iy

t=1

then by H® we mean the operator

—2,3( ) o) @

=1
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' Let ak(z)’ = (1 “,‘z)/Puc‘l‘z/sz’ 1< k< m, fi(z) = (1 —2)/qu+2/qx)
Bie(2) = (L—2)/dx+2/qu v(2) = (1—z)/u+z/r2, 8(2) = (1—z )81+ 2/83,
and 6'(z) = (1—=2)/s; +2/s;. Define

() ‘ Tl 5O ~2ie®)| Ty Pie® Ty py # o0,
z 3
TR 157~ Ty, P = 0,
and
(2) I I 18| 2@ = 9%2k| 8, | RO —PrN Y, g £ 1,
2) = ,
* AT A @ =1

Let F(2) = (Fy(2), Fi(2), .- ,.(z)), @(2) = (61(2); -+.) Gm(2)); then,
for z = t,F(t) =T and G(t) =
Finally, define

= D tr|(LF (2),Gn(2)] 7

k=1

Since L(F)(2); and G4(2) are finite dimensional, it follows that @(z)
is a holomorphic function on the strip 0 < Rez < 1.

1P+, = Z 1F(1+ )12, A

k=1

n
= D TRl 0= PaPe| | T PrlPek 72 2 = 1.

k=1
Similar computations show that |F(iy)l,,, =1 and |G(1 +i?/)||';;, J
2’72
= |G (iy)| I’l =1

1 l
These combine to imply

1D (iy)| = Itr [L(F)(iy)G (ig)]l
< | ILF(W)"QI,.«;I |G("f3/)”01 8]
_ < M1 (i9)lp, 1G9l = M,
and
1P (1+y)| < M| F (14 3y)lp,,r, IG (A +iy)lg)s; = M-
Thus applying the “three line theorem” we obtain (2.2).

This interpolation theorem can be applied to obtain various inequal-
ities in O, spaces. An example is

COROLLARY 2.1. Let 2 < p < o0 and p' < 8 < p, where 1/p+1/p’ = 1.
Then

(2.3) | Ty— TolP+ 1Ty + Tol? < 2 {I T2+ | Tals}  for Ty, TyeC,.
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Proof. Note that when s is p or p’, we get the usual Clarkson type
inequalities obtained in [5].

Define the operator L on pairs of finite-dimensional operators by
L(Tyy Ty) = (T,~T,, T+ T;) and let P, =@, = (2,2), P, =@, = (1,1).
The inequalities

(2.4) (1T — Tl + |7y + T2 < V2 (I T2 + | Tl 2}
and
(2.5) ma’x{"Tl — T4, 1Ty + Tz"1} < {”T1"1 + ||T2||1}

imply L: Cp , — O, With M, = Y2 and L: Cp,1 = Cg,,00 With M, = 1.
Inequality (2.4) follows from properties of inner products. Choosing #
so that 1/p’ =(1—1)/2+t =1+1t/2 and applying the interpolation
theorem we see that L: Cp , — Cp ,, Where P’ = (p’, p’) and

(2.6) {17y = Talf + 1Ty + T B3P < 2V {I T35 + |1 Tl5 37

Setting P, =0, = (2,2), Py, =@, = (00, o0) and using the ine-
quality

(27) max {| Ty — Tslloy [T+ Talloo} < 2 max{[| Tyl | T2lloo} s

we can apply the interpolation theorem to (2.4) and (2.7) with 1/p =
(L—1%)/2 to see that L: Cpy,— Cp,, Wwhere P = (p, p) and

(2.8) {17y — Toll3 + I Ty + TLI2HP < 2V7 {45 + |1 Tol 532

Finally, apply the interpolation theorem to (2.6) and (2.8) with
1/s = (1—1t)/p'+¢t/p. Then L: Cg,— Oy, and (2.3) follows.

Theorem 2.1 can be used in exactly the same manner for the C,
spaces that the interpolation theorem is on L, spaces in [4] to obtain the
following '

THEOREM 2.2. Let H be any Hilbert space and 1< p < oo. Then
¢(C,y H, a) holds provided a<1/2 or 2a < p < 2a/(2a—1) whenever 1/2
<axl.

The reflexivity of C, for 1 < p < oo allows us to use the same tech-
niques as in [7] to prove a similar theorem.

THEOREM 2.3. Let 1< p,q< oo, then e(C,,C, a) holds provided

(i) 2a<p<2 and p/(p—a)<qg<Dpa
or

(i) 2<p <2a/(2a—1) and ag<p/(p—1).

The results could be extended to a larger class of spaces by using
Young’s functions to define the spaces as in [1].
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