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Many important topological spaces can be characterized by the
fact that the spaces have a subbase with a special properties. For example,
compact spaces (Alexander’s subbase lemma), metrizable spaces [2],
and products of orderable spaces (see [4], [5], [8], [9], [13], and [14]).
Such characterizations will be called subbase characterizations.

The aim of this paper is to give several subbase characterizations
of some special spaces: the products of special 0-dimensional compact
spaces and metric separable prime spaces. Our technique allows us also
to get in a simple way some known subbase characterizations mentioned
above.

Following de Groot [7], a topological space X is called supercompact
if it has a subbase for closed sets (binary subbase) such that each subfamily
with empty intersection contains two disjoint elements.

We say that a subbase for closed sets of a space is g-binary if every
finite subfamily with empty intersection contains two disjoint elements.

Spaces with a ¢-binary subbase have a natural product structure
a8 is shown in Theorem 1. This theorem is the key for establishing subbase
characterizations not necessarily of compact spaces.

A subbase & for the closed -subsets of a space X is called T,-subbase
if for each # € X and 8 € & such that # ¢ § there exists a T € & with z € T
and SNT = 0.

A subbase & for the closed sets of a space X is said to be normal
if for each 8§, T € & with SNT = @ there exist 8,, T, € ¥ with 8 < 8,,
TeTl, 80T, =0 =TInNn8,, and S,vT, = X.

A subsystem S c & is called a linked system (Is) if every two its
members meet. A linked system M < & is called fiwed if ﬂM # @, and
free it (M= 0. A maximal linked system (mls) in & is a linked system
not properly contained in any other linked system. By the Kuratowski-Zorn
lemma, every linked system is contained in at least one maximal linked
system.
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1. Let X be a T',-space and & a subbase for closed sets. Let us assume
that & is a ¢-binary and T,-subbase.

The relation ~ defined on ¥ by 8 ~ 8’ iff thereexist 8, e &,1 =0, ...
...y kysuch that 8, = 8, 8’ = §;,and 8;_,NS; =B foreach i =1, ...,k
is an equivalence relation on %.

Let us assume that & fulfils the following condition:

(F) If £ «¢ & has empty intersection, then there exists a £ < & with
empty intersection and such that each two elements from & are in the
relation ~.

Let E be an equivalence class of the relation ~. Then we put X
={M: Mc B, Mis an mls in F and (M +# O} endowed with the
topology such that the sets E(S) = {M e X,: S € M}, where S runs
over the whole E, form a subbase for the closed sets.

Throughout the paper we fix the meanings of X, &%, ~, E, and X
as above.

LEMMA 1. The family Sy = {E(8): 8 € E} i3 a g-binary and T',-sub-
base in X .

Proof. Let £c &5 be a finite 1s. Then & = {SeE: E(S) € &
is a finite 1s in E. For 8, Z € & there is an mls M in E such that M € E(8) N
NE(Z). Hence 8, Z € M. Since E c & and & is a ¢-binary subbase, & is an
Is with nonempty intersection.

To prove that &5 is a T,-subbase let us take ¢ €e X, and E(8) € ¥
with ¢ ¢ E(8). Since ¢ is an mls in E and 8 ¢ e, there exists an §' € e such
that 8' NS = @. It follows that E(S8') NE(S) = @. But, clearly, ¢ € E(S').

For p e X we put L, = {Pe E: p e P}.
LEMMA 2. For each p € X the family L, is an mls in B (i.e., I, € X).

Proof. Let p € X. Since X is T,, there exist two disjoint members
in E. Hence p ¢ 8§ for some S8 e E. Since & is a T,-subbase, there
exists a P € % such that peP and PNS =©@. Since SeE and Pe E,
L, is a nonempty s in E. Assume that I, is not an mls in E. Hence there
exists a @ € B\ L, such that I, U{@} is an Is. Since @ ¢ L, p ¢ §, and since
& is a T',-subbase, there exists a Q' in & with p € Q' and Q' NQ = @. Since
Q € E and @' nQ = @, we have Q' ¢ ¥ and @' € I,; a contradiction with
L, being an Is.

LEMMA 3. Cardinality of Xy is at least 2.

Proof. The lemma follows immediately from the fact that X is a T,-
space and & is a T,-subbase.

Assigning, by Lemma 2, to each p € X the mls L, from X, we get
a map ¢p: X - X, .

The map ¢ is onto. To see this let us take M € X5. Then M is an
mls with nonempty intersection. Let p € (| M. Then L, and M are mls with
pe M nNL,. Hence L, = M.
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The map ¢z is continuous. To see this it suffices to observe that
o5 (B(8)) = 8 for each S e E.

Now, let # be the family of all equivalence classes of the relation ~.
Let Y denote the product of spaces X for each F € ¥ and let ¢p: X - ¥
be the diagonal of maps ¢y for each E € &~ (i.e., ¢ is given by the formula
¢(p) = {pe(p): E€&™}).

THEOREM 1. The space X is homeomorphic to Y.

Proof. The map ¢, the diagonal of continuous maps, is continuous.
Before proving that ¢ is onto observe that if B, B' e ¥ , E' # E, ¢ € X,
and ¢’ € Xz, theneUe' isanlsin &. Now,ifye Yandy = {yp: Ee &},
then |J{yz: Ee¥ }is an Is in &, and hence, by (F), there exists a
ge N{U {yg: E € &"}}. Clearly, for such a g, pz(q)=yy for each B e 5.
Thus ¢(q) = .

Let p and q be different points from X. Since X is a T,-space and &
is a T,-subbase, there exist § and 8 in & such that pe S8, qe 8, and
SNn8 = @. Therefore, § ~8 and 8,8 €E for some F e . Hence
9e(P) # ¢r(q). Consequently, ¢(p) # ¢(q).

The map ¢ i8 closed. To prove this it suffices to show only that the
images of sets from & are closed, since ¢ is one-to-one and & is a closed
subbase. Let S €%. Then S e F for some F €% . We shall show that

¢(8) = gp(8) X [ [{Xp: B €™ and E' +# E}.

Let us take ¢g (8), where S ¢ E’. Suppose, on the contrary, that
e (8) # Xz . Let us take M € X\ ¢z (S). Hence, by (F), Sn N M # 9.
Now, if we take a point p e SN (M, then L,, = M. Hence M € ¢z (8),
a contradiction. Clearly, if 8 € E, then ¢ (8) = E(8). The proof is complete.

For any family A of subsets of a set X we will use VA for the family
of finite unions of elements of A and A A for the family of finite intersections
of elements of A. The family AVA = VAA is closed both under finite
intersections and finite unions; it is called the ring generated by A.

A space X is called regular supercompact if X has a binary closed sub-
base & such that V A& is a ring consisting of regularly closed sets.

Let X be a regular supercompact space and let & be a binary closed
subbase such that VA is a ring consisting of regularly closed sets. It is
easy to see that if D is a dense subset of X, then ¥ |D = {SNnD: S e &}
18 a g¢-binary subbase in D. Van Douwen [6] proved that each compact

metric space is regular supercompact. Hence each separable metric space
has a ¢-binary subbase.

A space X is said to be prime if it contains at least two points and
there exists no Cartesian decomposition of X with at least two factors,
ecach containing at least two points.
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It is obvious that if X is the product of spaces X, with a ¢-binary
subbase &,, a€ X, then & = {n;'(8): ae 2, § € &,}, where =,’s are natural
projections, is a g-binary subbase in X, and if #7'(8,), #;'(8S,) € & are
in the relation ~ on &, then a =8, 8,, 8, € ¥,, and §,, 8, are in the
relation ~ on &,. Thus we have

THEOREM 2. A separable metric space i3 prime if and only if each two
members of an arbitrary q-binary subbase in the space are in the relation ~.

LEMMA 4. Assume that X is a T,-space and & a q-binary T,-subbase
in X which fulfils conditions (F) and

(vI) If 84, 8;, S5 are in & and S; NS, =0 = 8, NS, then S, = 8,
or 8 8,, or 8,Nn8; = 0.

Then for each two elements Z,, Z, from the equivalence class E of the
relation ~ we have

(*) Z,nZy =@ or Z,c Zy, or Zyc Z,, or Z,VZ, = X.

Proof. Let Z,,Z, be in E. Then there are S, ..., S; in & such that
Z,=802Z,=28,, and 8;,_,n8; =0 for i =1,...,k. Now we prove
condition (*) by induction on k.

If k¥ = 1, then condition (*) holds.

Suppose that condition (*) holds for all » < k. From the induction
assumption it follows that the pairs Z, and 8,,_,, Z, and 8, fulfil (). Hence

(1) Z,n8y_, =B or (2)Z, = 8_,, 0r (3) 8_,<Z,, or (4) 8,_,VZ,
= X.

If (1) holds, then Z,NS,_, =0 = 8,_,NZ,. Hence, by (vI), Z,NnZ,
=@ or Z,cZ,, or Z, c Z,.

If (2) is satisfied, then Z, < §,_, and 8,_,NZ, = @. Hence Z,NZ,
= 0.

If (3) holds, then we shall show that Z,NZ, =@ orZ, < Z,,0r Z,VZ,
= X (since it follows from (3) that Z; ¢ Z,).

Let us assume that Z, UZ, # X. Since < is a T',-subbase, we can find
a point ¢ Z,UZ,and sets F,, F,e & suchthat 2 e F,NF,and Z,NF,= O
=Z,NF,.Since S;_, c Z,, wehave §;_NF,=0 = Z,Nn8,_,. It follows
from (vI) that P,nZ, =@ or F, c Z,, or Z, c F,.

¥Z,NnF, =0,thenZ, c Z,orZ,c Z,,or Z,NZ, = B, since Z, N F,
= 0.

The case F'; « Z, is impossible as x € F'; and » ¢ Z,.

If Z, < F,, then Z,NnZ, = @ since F,NZ, = O.

If (4) holds, then Z, ¢ X\ §,_, = Z, since S;_, NZ, = .

Let X be a T,-space and & a ¢-binary T',-subbase which fulfils condi-
tions (F) and

(I) It 8,,8,,8; are in & and 8,NS; =B = §;NY,, then 8, = 8,
or 83 8,.
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For each 8 € & let us define a set

CS)={Ze%:Zc8 or 8cZ}.

LEMMA 5. The set C(S) is a chain.

Proof. Let 8,, S; € C(8). We consider three cases:

(1) ;=8 and 8, < 8.

Since & is a T,-subbase and X ¢ &, there exists a Z € & such that
SNnZ = @. It follows that 8§,nZ =@ = 8,NnZ. Hence, by (I), S, = 8,
or 8, c 8,.

(2) 8«8 =8, 0or S, =8 8,.

(3) 8= 8, and S <= 8,.

Since & is a T,-subbase and X ¢ &, there exist sets Z,, Z, in & such
that 8,NZ, =B and 8,NZ, = G. Since S §; and S = §,, we obtain
SnZ, =0 = 8nZ, and, by (I), we have Z, =« Z, or Z, = Z,. Suppose
that Z, « Z,. It follows that 8, nZ, = @ = 8,nZ, and, by (I), we have
S8 or 8, c8,.

Let us take an equivalence class B of the relation ~.

LEMMA 6. If 8, T e E and SNT = O, then

E =0®)u0(T) and C(8)NC(T)=0.

Proof. If &~ fulfils (I), then & fulfils (vI). Hence, by Lemma 4, it
follows that E fulfils (x). Let us take anelement Ze E.If Z < Sor S c Z,
or Zc T, or T < Z, then Z € C(8) vC(T).

Let ZNn8 = B. Sinee SNT =@, we have Zc T or T < Z by (I).

Let ZUS = X. Since & is a T,-subbase, there exists a G € & such
that ZN@ = @. Therefore G = S. Hence GNT =@ =GnNZ and T < Z
or Z < T by (I).

Suppose, on the contrary, that C(8)NC(T) # @ and let Z e C(S)n
NC(T). Then S<Z and T < Z. Since & is a T,-subbase, there exists
a @ €& such that GNZ = @. Hence GNS = @ = GNT. Consequently,
by (I), S= T or T < 8, a contradiction.

COROLLARY 1. The set {E(S): 8 € C(T)} i8 a chain in Xj.
COROLLARY 2. The set C(8) is an mls in E.
In the space X we define a linear order in the following way:

Let us choose 8, T in & such that SNT = @ and C(8), C(T) € Xg.
Then we put C(8) as the first element and C(T) as the last element. Let
us take two different mls’s M and N from E which belong to X . There
are Ze€ M and F € N with ZNnF = @. Then one of them belongs to C(S)

and the other to C(T). Assume that Z € C(8) and F e O(T). Then we let
M < N.
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To see that it is a linear order on X it remains to verify that if ¥ < N
and N < H, then M < H, and that if M < N, then N < M does not
hold.

Let M, N, and H be in X, and assume that ¥ < N and N < H.
If M < N, then there are sets Z e M and F € N with Z e C(8), F € C(T),
and ZNF = @. If N < H, then there are sets Z' ¢ N and F' € H with
Z' €0(8), ' € 0(T), and Z'nF = @. Since Z and Z’ are in C(8), we have
ZcZ orZ < Z. Since Z' and F are in N, Z'nF + @. But since ZNF
=@, Zc Z'. Hence ZNF = @ and, consequently, we have M < H.

Suppose that there are M and N in X, with M < N and N < M.
If M < N, then there are sets Z e M and FeN with Ze(C(8), FeC(T), and
ZNT =@.1f N < M, then there are sets Z’' € N and F' € M with Z' € C(8),
F e€C(T), and Z'nF' = @. Since Z and Z' are in C(8), we have Z' c Z
or Zc Z'.1t Z<c Z', then Z'nF' = @. But Z, F' € M, a contradiction.
X Z cZ,then ZnF = @. But Z', F € N, a contradiction.

THEOREM 3. Topology on Xy s induced by the linear order <.

Proof. By Lemma 6 we have F = C(S)U(C(T). Let us consider
the set {M e Xp: M < N}. If N # C(T), then N nC(8) # @. (In the case
N =C(T), {M e Xz: M <N} = Xz.) Let us take for each Z € NnC(8)
the set E(Z). Then

(MeXz: M<N} = N{E(Z): ZeNnC(8)}.

To see this observe that if M < N, then there exist sets F ¢ M and
F'e N such that F eC(8) and F' e C(T), and FNF = @. Since Z € C(8)
and Z e N, we have F < Z. Therefore Z ¢ M, and hence M € E(Z) for
each Z e NNC(8). Thus

(M eXy: M<NYe N{EZ): ZeNnO(S)).

For the converse suppose, on the contrary, that there exists an
HeN{E(Z): ZeNNnC(8)} with H¢{MeXy: M<N}. Then N<H
and, therefore, there are sets Ge N and G € H such that G e C(S),
@'e((T),and @NGF = G@. Hence Ge N nC(S). But then G € H, a contra-
diction.

We do the same when we try with the set {M e X ,: N < M}.

Let us take Z € E and the set E(Z). Suppose that Z € C(S). For each
point ¢ € X\Z there exists a G, € C(T) such that ZNn@G, =G and = € G,.
The family of those G,’s is enclosed in C(T). These sets form a chain.
If we take two different elements from this chain, we can choose a point
p lying in their difference. Since % is a T',-subbase, for the chosen point
we can find in ¥ a set containing this point and disjoint with the smaller
(in the sense of our order) set in the given pairs. Thus Z is contained in
this element. Let us take the 1s L, = {P e E: p € P} and the set {M € X:
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M<L,)}. If MeE(Z),then Z € M. Let us take for p a set G, such that
p €@,. Then G,NnZ = O, and so M < L, for each point p e X\ Z. Hence

E(Z)c N{M eXp: M<L,}: peX\Z}.

Suppose that there exists a Te N\ {{M e Xyz: M <L,}: peX\Z}
with T ¢ E(Z). There exists a P €T such that ZNnP =©@. We show
that P = X\Z. Since P € C(T), P is comparable with each @,. If P Z G,
then for each p € G,\P there exists an F € & such that PnF =@ and
peF. Then L, <T, which is a contradiction. Hence @, = P for each
« € X\Z, which shows that P = X\Z.

Let us take two different points N and N’ from F(Z). Since X is
a T,-space and &5 is a T,-subbase, there exist their disjoint neighborhoods
E(Fy), BE(Fy.) € g, Fyo NFy = . Since E is the sum of chains C(Z)
and C(X\Z), Fy belongs to one of them and Fy. to the other; say
FyeC(Z). Then Fy < Z. Let Fy. € C(X\Z). Then X\Z c Fy.. For each
point y € Z\ Fylet us take the set F, with y e F, and F,NFy = @. Thus
X\Z c F,. Let us take the linked system

R = {Z} U{F,: y e Z\Fy}.

This family is contained in exactly one mls 7" (because if 7', and T,
are different mls’s containing R, then there exist P, €T, and Py, e T,
such that P, NP, = @). Hence P, € C(Z) and P, € C(X\Z) or conversely.
Then Z < P, and X\Z c P,. But then P,NP, # @, since P,NZ #* @;
a contradiction.

Now we show that for each N € F(Z) such that N # T the relation
N < T’ holds. Indeed, assuming on the contrary that there is an N e E(Z)
such that 7' < N we get sets HeT and H e N such that H e ((8),
H €C(T), and HNnH = @. By HeC(8)nT' we have Z c T. But then
Z e N, a contradiction. This shows that E(Z) = {MeXgz: M<LT}.

Let us assume that a subbase & fulfils the condition

(M) For each point # € X and for each T € & such that ¢ € T there
exists an S e such that re S T, and if Ze & and v €Z < 8, then
Z = 8.

The element 8§ is called minimal for & and T.

LeMMaA 7. If & fulfils (M), then so does ¥x.

Proof. The family &, is a subbase in X,. Let £ € X; and take
an arbitrary set E(8) € ¥ such that £ € E(8). Then (é <= S. Letz e (M) &.
By (M), there exists a IT' € & such that T < 8 and T is minimal. We will
show that E(T) is minimal for &£ and E(8). Since T € &, we have & € E(T).
Suppose that there exists a Z € & such that & € E(Z) < E(T). It follows
that Z < T. Since Z € §, # € Z and by (M) we have Z = T. This completes
the proof.
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2. In this part of the paper we will give the characterization of
0-dimensional supercompact spaces which fulfil condition (vI).

Let X be a 0-dimensional supercompact space and let & be a binary
subbase for the topology on X which fulfils conditions (vI), (M), and such
that if S €&, then X\ 8§ e &.

Denote by &~ the set of all classes of the equlvalence relation ~.
Any element F € ¥~ has a corresponding space X;. By Theorem 1 the
space X is homeomorphic to the product of supercompact spaces Xj.
By Lemmas 4 and 7, the induced subbases %5 on X fulfil conditions ()
and (M). Let # be the subset of %~ consisting of elements which are finite.
The product of elements from £ is homeomorphic to the Cantor discontinu-
um or is a finite discrete space.

Consider now spaces X5 which have an infinite number of points.
An example of such spaces is the one-point compactification of an infinite
discrete space.

THEOREM 4. Assume that a supercompact space X, card X > N,, has
a binary subbase & which fulfils conditions (x), (M), and

(C) If Fe ¥, then X\F e ¥.

Then there exist a finite chain {X,},k = 0,...,n, of subsets of the
space X amd a finite chain of decompositions {W,} of the sets X\ X, with
the following properties:

(1) X; « X, for k> 1i; X, i8 a one-point set.

(2) X, 18 a nowhere dense subset of X, ,.

(3) #; 18 a refinement of W', for i > k.

(4) If W e #,, then W is an isolated point in X (hence X i8 a compacti-
fication of the discrete space D = \J{W: W e¥#,}).

For the proof we need some lemmas.

LEMMA 8. If a space X fulfils the assumptions of Theorem 4 and has
infinitely many nonisolated points, then there exist a point * € X and a decom-
position W of the set X\ {*} such that infinitely many elements of the decompo-
sition have an accumulation point.

Proof. Since the set of all accumulation points is infinite, we can take
a nonclosed subset K of the set of accumulation points of X. Let » belong
to the set cl K\ K. For each point # # * there exists a V, € & such that
2z € V,and * ¢ V,. By assumption (M) we can take it for granted that V
is the set which fulfils (M) for a pair 2, V. Let us put

R =V, eX\{x}]

and choose an arbitrary maximal chain Z in #. For each V €%, X\V € &
and * € X\V. Thus by (M) there exists a minimal element Vo, c X\V
for ». By (*), V& is common for all sets X\ V whenever V €%. Hence
U¥ < X\V,. Let us take an arbitrary pair of chains & and &’. Then



SUBBASE CHARACTERIZATION 193

X\Vy and X\ Vg are, by condition (x), disjoint or equal. We have
got the decomposition of the set X\ {*} into closed-open sets from the
subbase <. If, on the contrary, only finitely many elements of the decompo-
sition have accumulation points, then the union of these elements is a
closed-open set containing K, and so also its closure. But this is a
contradiction with the assumption * € cl K\ K.

LEMMA 9. Let X fulfil the assumptions of Theorem 4. If V € &, then
V is minimal for some point.

Proof. Suppose, on the contrary, that there exists a V € & which
is not minimal for any point. For each # € V we take a minimal element
V, < V. Since V is closed-open, there exists a finite family {V,, ..., V,}
< {V,: €V} such that V = V,u...UV,. Hence

(1) XI\V = N(IX\V)).

We may assume that no element of this family is included in another
one. Since & fulfils condition (*), elements V,,..., V, are disjoint. But
since each V), is different from V, the family B = {V, X\V,, ..., I\V,}
is linked. Since & is binary, (| B # 9. A contradiction with (1).

LEMMA 10. Let X fulfil the assumptions of Theorem 4. If V is a mini-
mal element for x, and y € V (¢ + y), then V is not minimal for y.

Proof. Since & is a binary subbase consisting of closed-open sets,
there exist sets U and H from & such that € U, y € H, and UnH = @.
We can assume that both sets U and H are minimal. Hence we have a pair
U, V of different minimal elements for a point . Then, by (x), UUV = X.
Hence the set X\ U is included in V and is different from V which is a
neighborhood of a point y.

LEMMA 11. The subbase & from Theorem 4 can be modified in such
a way that the isolated points of the space X belong to &.

Proof. Let 2 be an isolated point which does not belong to &. Let us
take an arbitrary minimal set V for #. By Lemma 9, the set X\ V is minimal
for some point y. Instead of the pair V, X\ V take the pair {z}, X\ {z}.
We show that X\ {#} is minimal for the point y. If it is not true,
then there exists a set We &, W # X\V, minimal for ¥y and X\ {z}.
Since & fulfils (), we have W <« X\ V or X\V <« W. By (M), X\V c W.
Suppose that W s X\ V. Then by Lemma 9 there exists a point p such
that W is minimal for p. Hence p € W\ (X\ V). Since p € V, by Lemma 10
there cxistsa V, <« V, V,, # V, such that p € V,, and V, is minimal for p.
The scts W and V,, being minimal for p, by (*) we have V,UW = X.
Since ¢ W, s € V, = V; a contradiction with the assumption that V
is minimal for .
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Proof of Theorem 4. Let us consider two cases.

I. The space X has finitely many accumulation points. Then X is the
sum of one-point compactifications of discrete spaces.

IT1. The space X has infinitely many accumulation points. By Lemma 8
there exist such a point * (it will be our space X,) and a decomposition
W, of the space X\ X, such that elements of #°, belong to . Denote by
w'; a subfamily of #; consisting of infinite elements. Suppose that the
pairs X;, #,; are defined for i < k. Let us take a subfamily % c %
consisting of infinite elements. For each W e % we take a point for
which W is minimal. Let

X1 = X V{p: pe Wew, and W is minimal for p}.

For each point y € W,y # p, let us take, by Lemma 10, a minimal
set V, for y and W. Denote by E the family of all these minimal sets.
For each maximal chain ¥ < R let us take a family of neighborhoods
of a point p of the form X\ V, where V €. Since & fulfils condition (M),
for each X\ V there exists a minimal set for p and X\ V. Since & fulfils
condition (x), this minimal set is one for all X\ V, where V €. Denote
this minimal set by Vg. By (*), Vo UW = X. Hence X\ V4, ¢ W. For
each pair of chains & and &' the sets X\ Vg, and X\ V. are equal or
disjoint. Hence we have a partition of the set W\ {p} into elements of <.
Now, let us take this partition for all Wew;, and add all elements from
W,\W;. Hence we have the partition of the set X\X, ,. The pair
X119 Wi fulfils (x) and (C).We will show that this pair fulfils condition (M).
Since X\X, = |J#", where each W € ¥, is open, the set X, is closed
in X. Take the set X;,, = X,,,\X;. We will show that X, is dense
in X, ,,. From the induction hypothesis we infer that X, is dense in X,
(X, is a one-point compactification of a discrete space). It suffices to show
that each point from X, is an accumulation point for X, _,. Let # € X;.
Then there exists a W € #7,_, such that W is minimal for z. Let us take
those elements from %7, which form the partition of the set W\ {x}.
Let us take one point from each element of the partition. The set D of all
these points is discrete in the induced topology and z is an accumulation
point for this set. Hence X, is nowhere dense in X, _,.

Now we show that after finitely many steps | JX, = X.

Suppose the contrary. We will show that ¥ = (JX, is closed in
X. Let us take a nonisolated point y e X\Y. For each n there exists
aV,e¥, such that-yeV,. Since #°,,, 3 #,, the family {V,} forms
a chain. From condition (M) it follows that there exists a V € & such that
yeV cV, and V is minimal for each V,. From Lemma 10 it follows
that V is disjoint with the set consisting of all those points for which the
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sets V, are minimal. Hence VNY = @. Since X, is nowhere dense in
X,.1, X, is nowhere dense in Y. Hence Y is a countable union of nowhere
dense subsets, which is a contradiction with the Baire category theorem.

3. This section is a review of theorems in which the subbase concept
is used to characterize several spaces.

THEOREM 5 (van Dalen [4]). A T,-space X is a product of spaces
with the topology induced by linear order if and only if there exists a q-binary
T',-subbase for the topology on X which fulfils conditions (I) and (F).

THEOREM 6 (de Groot and Schnare [9], Szymanski and Turzanski
[14]). A Hausdorff continuum is a product of linearly ordered Hausdorff
continua tf and only if there exists a binary subbase for its topology which
Sulfils condition (I).

THEOREM 7 (de Groot [8], Szymanski and Turzaniski [14]). A meiri-
zable continuum X s a Euclidean n-cube (Hilbert cube) if and only if there
exists a binary subbase & for its topology and card & | ~= n (card & [~ = N,).

These three theorems are immediate corollaries to Theorems 1 and 3.

¢ THEOREM 8 (Szymanski and Turzanski [14]). A space X is a Tycho-

noff cube if and only if it is a dyadic continuum and if there exists a binary
subbase for its topology which fulfils condition (I).

Proof. Dyadic spaces have a topological characterization given

by Alexandroff and Ponomarev in [1]. By Theorem 6, X is a product of

linearly ordered dyadic continua. By the theorem of Mardefié and Papié¢

[10], cach element of the product is a topologically closed segment. Thus
X is a Tychonoff cube.

A point # € X is called a separation point of y and z (v, z € X) if X\ {z}
= AUB withyeAd,zeB, AnB =@, and A, B are open.

A connected space is said to be tree-like if every two points of this
space have a separation point.

Brouwer and Schrijver [3] and van Mill [11] proved that compact
tree-like spaces are supercompact.

THEOREM 9 (van Mill [11]). Let X be a topological space. Then the
following properties are equivalent:

(1) X is compact tree-like.

(2) X is conmmected and has a binary normal subbase such that it fulfils
condition (*).

From Theorem 1 and Lemma 4 we obtain

THEOREM 10 (van Mill [11]). If X is a compact connected space which

has a binary subbase fulfilling condition (vI), then X is8 homeomorphic to the:
product of compact tree-like spaces.
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THEOREM 11. Assume that a space X has a q-binary T,-subbase &
which fulfils condition (F) and is such that

(a) £|P i8 a q-binary subbase for each closed subset P of X,

(b) if S, then cl(X\8) e & and card X > 4.

Then the topology on X is generated by a linear order.

Proof. We will show that the subbase & fulfils condition (I). Let us
take three sets 8,, S;, S, such that §,n8, =@ = 8,8, and suppose
on the contrary that S8, ¢ 8, and 8, ¢ 8,. Let

v e Int(8,\8,), v eInt(S,\8;), =zelInts,.

Take the closed set {z,y,2} = Y. The sets {®,2} = cl(X\§8,;)NY,
{y, 2} = cl(X\8,)NY, and {z, ¥} = cl(X\8,) N Y create an ls, but their
intersection is empty, a contradiction.

Now, by Theorems 1 and 3, X is a product of linearly ordered spaces.
Suppose that X = X, x X, and that X, and X, are linearly ordered spaces.
Then one of these spaces, say X,, has three or more points. Let a < b < ¢,
{a,b,c} c X,,and ¢ < y, {», y} = X,. Then & |{(a, #), (b, y), (¢, #)} i8 nOt
g-binary. .

‘For X = X, xX,X ..., let a, < a,, a,,a, € X,, b; <b;, b;, b, € X,,
and ¢; < ¢,, ¢, ¢, € Xg. Then

&L 1{(@15 by €15 +..)y (@1y b2y gy ...), (g, by,y Cay ...)}

is not ¢-binary.
Hence the topology on X is generated by a linear order.
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