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ON CARDINALITIES OF ALGEBRAS OF FORMULAS
FOR wy,CATEGORICAL THEORIES

BY

JAN WASZKIEWICZ (WROCLAW)

1. Preliminaries. This paper is a by-product of paper [4], so we shall
use the same notation. T' will denote a theory in a first order language L.
All discussed theories will be assumed complete. #,(T) will be the Linden-
baum algebra with respect to T of formulas of L with n free variables.
The power of a set A will be denoted by |A|. We write a,(T) = |#,.(T)|.
The number of atoms in #,(T) will be denoted by b,(T). If T = Th(%),
we write &, (%) instead of &, (T).

Other analogous notations will be used. An element of #,(T) will
be denoted by ¢/T, where ¢ is a representative of the element under
discussion (such an element is an equivalence class of formulas).

By a theorem of Ryll-Nardzewski [2], a,(T) ¢s finite for every n if
and only if T is w,-categorical.

In 1969 Ryll-Nardzewski raised a problem of characterisation of
sequences of Boolean algebras (8,: » < w) such that there exists T' such
that B, ~&,(T). We will discuss the problem: for which sequences
of natural numbers <{a,: » < 0), &, = a,(T) for some w,categorical T %
In this case b,(T) = logz(a,,(T)), so that we can equivalently look for
conditions on sequences <b,(T): n < w).

A relational structure will be called w,-categorical if its theory is
categorical in w,.

In the second section we give the characterisation of sequences
b, (T): » < w) for wy-categorical Boolean algebras. In the third section
we give some simple necessary conditions for the general case. The most
interesting result of this section seems to be the following one:

The sequence <{b,(T): n < w) t8 bounded by an exponential function
if and only if T i3 a theory of a finite relational structure.

2. Powers of # -algebras for ,-categorical Boolean algebras. We
recall that a Boolean algebra i8 w,-categorical if and only if it has finitely
many atoms. We start our discussion with the case of a finite algebra.
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We will use the following notation: “card # = k” will denote the formula
of the language of Boolean algebras which says that “x is a union of %
atoms”. If ¢ =1, then ex = x; if ¢ = 0, then ex = —a, for ¢ = (e, ..
cey Ep_1yy 6% = [ ) {&;%;: 1 < m}.

The following lemma can be easily proved by the standard inductive
procedure (cf. [3]):

LeMMA 1. For a finite Boolean algebra B ~ 2™, every formula with
n free variables is equivalent to some disjunction of formulas of the form

(2.1) N\ {carde? = k(e): ee2"}.

As an immediate application of this lemma we obtain

PrOPOSITION 1. b, (2™) is equal to the number of all functions k with
he domain 2™ and range m + 1 such that

(2.2) D) {k(e): ze2™} = m.

Proof. By Lemma 1, every atom in &% ,(2™) can be represented by
a formula of form (2.1), and, conversely, every formula of this form which
is not false (i. e., for which (2.2) holds) represents some atom in & ,(2™).

From Proposition 1 we obtain the following algorithm for computing
b,(2™). Let b(n, m) be the number of all functions on #, with non-negative
integer values, and such that the sum of all values is equal to m. We
can extend this definition by putting 5(0,0) =1, and b(0, m) = 0 for
m # 0. It is easy to see that

(2.3) b(n+1, m) = Zb(n,

By Proposition 1, b,(2™) = (2", m), and from formula (2. 3) we can
obtain recursive formulas for b(n, m), for fixed m. So, we can obtain the
formulas for b, (2™).

For example, b(n, 0) = b(n—1,0) =... =b(0,0) =1; b(n, 1)
+ b(n—1,1)+1, so b(n, 1) =n; b(n,2) =b(n—1, 2)+b(n—1, 1)+
=b(n—1,0) =b(n—1,2)+n, so b(n,2) =n(n+1)/2.

From these formulas we infer that b,(2) = 2", and b,(2%) = (4" 4+ 2")/2.
The last formula can be used in estimation of the power of & ,-algebras
for finite direct products (see Proposition 2 in [4]).

As in Lemma 1 and Proposition 1, we can determine the number
of atoms in #,(B) for atomless Boolean algebra B. Namely, by a theorem
of Skolem [3], from every element of #,(B) one can choose a quantifier-
free representative. By an easy induction, one can prove that every
formula is equivalent to an alternative of conjunctions of formulas of
the form ¢% = 0 or ¢% # 0. So, every atom can be represented by a not
false formula

A{n(e)(et - 0): ec2%},



ALGEBRAS OF FORMULAS 9

where, by analogy to the previously used notation, np = ¢ for 5 =1,
and np = ] ¢ for 5 = 0. It 1s evident that such a formula is not false
if and only if () # 0 for some e¢ 2". So, we have proved the following
proposition:

PrOPOSITION 2. For atomless Boolean algebra B b,(B) = 2" —1.

As a simple corollary to Propositions 1 and 2 one can prove the
following result:

ProPOSITION 3. If B is infinile and has a finite number of atoms, say
m, then the number of atoms in F,(B) is equal to b(2", m)(22" —1).
Proof. Every free variable in a formula representing an atom o-

Z,(B) can be divided into atomic and atomless parts to which the prelf
vious propositions can be applied.

3. Some contributions to the problem of C. Ryll-Nardzewski.
PrOPOSITION 4. b,(T) = b, (T) b, _(T).

Proof. Let ¢ be a subalgebra of &#,(T) generated by a set @ of al
classes ¢/T for

(3.1) @ P1(Voy eovy Vgg) A Pa(Vhy ooy Vpy)y

where y, is an atom in #,(T), and y, represents some atom in &, _,(T).
Because ¥ < #,(T), it suffices to show that @ is a set of atoms of ¢, and
that the power of @ is equal to b, (T)-b,_,(T).

First of all, we show that every element of % is a union of elements
of @ (0 is an empty union). For the proof, it suffices to show that the
family of such unions, say %', is a subalgebra of ¥ (so it is equal to ¥).
From the definition, ¢’ is closed under unions, and it is closed under
intersections by the distributivity laws. The complement of any element
of ¢’ is an intersection of complements of members of &. Since the algebras
F, and ¥, _;, are finite, the complement of an element of @ belongs to ¥'.

To prove that @ has the desired power, let us assume that
Try,Ap—~>9, Ay, Then T Fy, A y,—y,. But T is complete and
p, and y, have no common variable. Then either T' | y;, -y or T + ] v,.
But v, ¥;, s, Y. represent atoms in corresponding Boolean algebras.
So, v,/T = v,/T and y,/T = y,/T, which completes the proof.

" COROLLARY 1. b,(T) > (b,(T))"

The natural question arises: when in this formula the equality appears.
The answer will be given in the next proposition.

PROPOSITION 5. b, (%) = (b, ()" if and only if A is finite and every
element of its universe is definable.

Proof. Let every element of a finite 2 be definable, and let ¢ have
n free variables. Let

A(p) = {K@oy +ory @yr>: A= @[ag, ...y 4,1}
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Then
‘XI= @V {9o(Vo) A cov A @ 1(V,_1): {Boy ..oy @y A(p),
and ¢; defines a;}.

Conversely, let not every element of U be definable. Then there
exists an atom ¢, in #,(A) which is satisfiable by at least two different
elements of A. S0, ¢o(vy) A @o(V1) A Vo = v, aDA @o(Vy) A @o(0)) A ¥y # ¥
represent two disjoint elements of #,(). Using the argumentation
analogous to the proof of necessity, one can show that b, (%) > (bl(ﬂl))z +1.

COROLLARY 2. For a finite A, b, (N) < |A™

This corollary gives an upper bound of the powers of &,-algebras.
To obtain a lower bound, we use the theory of equality. Let, for m < w, m be
a structure with the equality as the only relation, and with the universe
{k: k < m}. We start from the obvious lemma:

LEMMA 2. (a) F,(m) = F,(A) for [A| = m. .

(b) @/m is an atom in F,(m) if and only if

m|= g AN{oy = (Gygdeer A N {og #0950 {456 o}y
where o 18 an equivalence relation on n with at most m equivalence classes.

PROPOSITION 6. (a) b,(m) is equal to the number of all equivalence
relations on n with at most m equivalence classes.

B by = 3 (*7Y) bass(m—1),

k=0
b,(0) =0 for n # 0, by(m) = 1.

©  bu@) =bu) = 3 ("3 bacscs(@).

k=0
Proof. (a) is a simple reformulation of Lemma 2 (b).

(¢) is a consequence of (b) and of the fact that if m > #n, then b,(m)
= bn(n)'
(b) To determine an equivalence relation ¢ on n, it suffices to determine

the class of the element » —1. Let this class have k elements different

from n — 1. Then there are ("’;l) possibilities of such a choice. If this class

is determined, then one has to define the partition of the remainder into
at most m—1 classes.

We collect the results of this section in the following theorem:

THEOREM. (a) If |U| = m < o, then b,(m) < b, (A) < m".

(b) If |U| = w, then b, (w) < b,(A), and there is no integer d such that
b, (N) < d* for every n < w. '

Proof. (a) and the first part of (b) follow from Lemma 2(a) and
Corollary 2. The second part of (b) follows from the inequality b, (w)
> (n—1)b,_,(w). Because by(w) =1, then b,(w) > (n—1)!.
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Not only examples of countably categorical Boolean algebras and
of theory of equality, but also a few other examples of countably cate-
gorical theories seem to give evidence for the validity of the following
conjecture:

ConJECTURE. For a decidable countably categorical theory T, a,(T)
8 a recursive function. (P 818)
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