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MONOTONICITY, CONTINUITY AND LEVELS
OF DARBOUX FUNCTIONS

BY

K. M. GARG (EDMONTON, ALBERTA)

Introduction. In the present paper* we investigate conditions under
which a Darboux function is monotone and establish some properties
of nowhere monotone Darboux funections.

Let f be a real-valued Darboux function defined on the real line.
It is well known that f is monotone if it is one-to-one. We prove here that f
is monotone if it assumes a dense set of its values only once. The function f
is shown to be always monotone and continuous relative to the closure
of the union of connected levels of f. The function f is thus again mono-
tone whenever its connected levels are dense in its domain. In case f is
nowhere monotone, we prove that f~'(y) is dense-in-itself for a comeagre
set (see the next page) of real values of ¥y and that there exists another
comeagre set of real numbers  such that x is a limit point of f~' {f(x)}.
Several interesting corollaries follow from both these results. We also
investigate the Borel measurability of certain sets associated with f,
improving thereby two earlier results of Sierpinski [22].

We shall assume throughout the paper R to be the set of real numbers
and, unless otherwise stated, f to be a real-valued function defined on R
or on a subinterval [a, ] of R. For every yeR, f~'(y) = {z: f(z) = y}
is called a level of f. For each of a =1, ¢, k,d and p, Y, (f) will denote
the set of yeR for which the level f~!(y) is, respectively, a singleton,
connected, closed, dense-in-itself or a perfect set and S,(f) = f'{¥.(f)}

A function f is called nowhere monotone [nowhere constant] if it is not
monotone [constant] in any subinterval of the domain of f. A nowhere
monotone function f is of the first species if there exists reR such that
the function f(x)+ rx becomes monotone, and it is of the second species
if f(x)+ rx remains nowhere monotone for every re¢R [8].

* A part of the present paper was presented at the summer meeting of the
Canadian Mathematical Congress held at Edmonton in 1970. The author gratefully
acknowledges financial support from the NRC under grant A-4826.
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‘Aset A cRisa boundary set if its interior A° is empty, it is dense-
-in-itself if it has no isolated points, and it is meagre if it is a countable
union of nowhere dense sets. A is further comeagre [cocountable] if its
complement A’ is meagre [countable]. 4 and FrA denote the closure
and the frontier of A, respectively.

Section 1 is devoted to conditions under which a Darboux function
is monotone or continuous. In Section 2 we investigate the properties of
nowhere monotone Darboux functlons, generallzlng thereby some of the
author’s earlier results on continuous nowhere monotone functions (see
[6]-[9]). In Section 3 we study the Borel measurability of the sets Y, (f)
(a =1,¢,k,d, p) for an arbitrary Darboux function f.

1. Monotonicity and continuity of Darboux functions. If q, §, y are
three real numbers, we say that a is between f and y if § <a<y or if
y<asxp. We start with the following

LeEMMA 1. A real-valued function -f defined -on -a.set: A . R 48 mono-
tone if and only ify for -every %, x,, xze A, f(xy) 98 between.f(x,) and f (23)
whenever - x, 18 betwéen . x,  and xq. . ‘ ¥ '

Proof Necessxty is trnna,l To prove the sufflelency, let f satlsfy
a<b and f(a) < f(b) and there equally exist ‘¢, ded” such"'th’at b<d
and f( (¢) > f (d) I a = c, we have b' % 'd’ and we arfive at' a contradiction
on puttlng &y t a, w2 = mln{b d} and Ty = max{b a5, It 'a ;é ¢, to be
specﬁlc let a < é. ‘In case b = d put z, =a, x2 =-¢ and x, = b, and 'in
case b < d put @, = a, xy =@ and @, = b or ¢ Wherever f is larger In
case b>d Wwe have a < ¢'< d < b; 1f f(c)>f(a ‘put w, ='a, oy ='e
a,nda:3 =d, andlff(c)<f(a put.n1 = a, Ty —cﬁla,nd.n3 ='p. -

THEOREM 1. A Darbouw fnnctwn fis monotone zf a,nd only zf zts Tevel
f (y) 8 connected for a set of oalnes of Y dense zn the mnge of f.

Proof If f is monotone, then, in fact, each of its levels is connected
To prove the ,suiflmency, let f satlsfy the glven condltlon If f is not mono-
of f snch that o, < 2y < @, and f(z) is not between f(z,) and f(zs). To be
specific, let f(x,) be greater than f(»,) and f(z;). If a = max{f(z,), f(2s)},
we have a < f(x,) and, for every Be(a, f(x,)), f assumes f,in (x,,x,) a8
well ag in (x5, 23) but not at.z,, i.e, f~' (8) is disconnected for every f < (a, f(2.))-
Since .(a, f(z,)) is contained in the range of f, this, contradicts_,o,ur hypo-
thesis, and so f is monotone.

Following is perhaps a little more useful version of Thecrem 1:

THEOREM . 1'. A Darboux function f assuming more than one value is
monotone if and only if the set of values assumed only once 48 dense in
the range of f. : ;
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Proof. The sufficiency part follows trivially from Theorem 1. To
prove the necessity part, let f be monotone and let it assume more than
one value. Since f has connected levels, each value that f assumes more
than once is assumed by f on a non-degenerate interval. Since there can
exist only countably many disjoint non-degenerate intervals, it follows
that f assumes all but a countable set of its values only once. The range
of f being a non-degenerate interval, the complement of this countable
set is clearly dense in the range.

As is evident form this proof, the necessity part of Theorem 1’ can
be further strengthened as follows:

CoROLLARY 1.1. A Darboux function f is monotone if and only if, except
for a countable set of its values, each is assumed by f only once.

Since a monotone function is strictly monotone if and only if it is
one-to-one, we have

CorOLLARY 1.2. A Darboux function f is strictly monotone if and only
4f it is one-to-one.

Remark 1. Corollary 1.2 is well known and was proved independently
by Gillespie [13], Jacobsthal [14] and Tricomi [23]. Gillespie did. prove
the continuity of a Darboux function satisfying the condition of Theorem 1’
but failed to notice its monotonicity. Diaz [4] recently proved that f is
monotone if it assumes all of its values but for its supremum and infi-
mum only once. For another proof of the sufficiency part of Theorem 1’
see author’s [12].

We next prove that a Darboux function f is always monotone on the
closure of S.(f).

LemMMA 2. If f is Darboux and x,, x,eS.(f), then, for every x between
x, and x,, f(x) is between f(x,) and f(x,).

Proof. Let z,, z,¢8.(f) and let z, < x,. If x,, 2, are in the same
level of f, then f is constant in [#,, #,] and the result holds trivially. Other-
wise, f(#); # f(w,), say f(2:) < [f(2,), and let », < x < @,. If f(2) < f(2y),
then f~'{f(x,)} contains #, and a point between # and x, but not x. As
x,€8.(f), this is not possible, and so we have f(x,) < f(x). Since z,¢8,(f),
. we gimilarly have f(z)< f(=,).

LemmA 3. If f is Darbouxr and x is a limit point of S.(f) from some
side, then f is continuous at x from that side.

Proof. According to Lemmas 1 and 2, the function f is monotone
relative to S,(f), say non-decreasing. Let  be a limit point of S,(f) from
the right. Since f cannot have a discontinuity of the first kind at any
side of a point, each non-degenerate connected level of f contains both
of its end points. Hence, if « is a left end point or an interior point of
some non-degenerate level of f, f is trivially continuous at « from the right.
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Otherwise, there exists a sequence {x,} of points in S,(f) all belonging to
different levels of f such that z, decreases to x. Then {f(x,)} is decreas-
ing, and so has a limit (possibly — o0), say a. But then it follows from
Lemma 2 that a is equally the limit of f from the right at z, and
since f cannot have a discontinuity of the first kind, f is continuous at a
from the right.

The proof is analogous when z is a limit point of S,(f) from the
left, or when f is non-increasing on 8,(f).

As an immediate consequence of Lemma 3 we have

LeMMA 3'. A Darbouxz function f is continuous at every bilateral limit
point of S,(f)-

THEOREM 2. A Darboux function f is continuous and monotone relative
to the closure of S,(f).

Proof. Let g = f/S.(f) and xS (f). If « is not a limit point of S,(f)
from some side, then ¢ is trivially continuous at « from that side. In case «
is a limit point of ij_) from some side, it is equally a limit point of S,(f)
from that side, and so, by Lemma 3, g is then continuous at z from that
side.

According to Lemmas 1 and 2, g is already monotone on 8,(f), say
non-decreasing. Let z, y<S,(f) and x < y. There then exist two sequen-
ces {z;} and {y;} of elements of S,(f) such that #;—x, y;—y and x; < y;
for every pair of natural numbers ¢, j. Since g is continuous, we have

g(x) =limg(z;) and g(y) = limg(y,).

1—00 1—>00

But, for every pair of natural numbers ¢, j, we have g(x;) < g(y;),
and so ) .
lim g (2;) < limg(y,),

1—00
i.e. g(x) <g(y)

COROLLARY 2.1. If f 48 Darboux and S.(f) is dense in the domain of f,
then f 18 momotone and continuous.

Remark 2. A continuous function f is known to be monotone if
it is so relative to a dense set in its domain. This statement, however,
does not hold for a general Darboux function, e.g. for a function that.
assumes every real value at a dense set of points (see [3], p. 97, Example
3.2). The denseness of S,(f), on which f is already monotone, makes a Dar-
boux function f monotone only because it also forces f to be continuous.

Since a monotone function has all of its levels connected, we further
have

COROLLARY 2.2. A Darboux function f is monotone if and only if S,(f)
is dense in the domain of f, and is strictly monotone if and only if S,(f) is
dense in the domain of f.
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As seen in Lemma 3’, a Darboux function f is continuous at every
bilateral limit point of S,(f). The same holds at every point zef~'(y)
if ¥ is a bilateral limit of Y (f), or even of Y,(f) which contains Y (f).

THEOREM 3. If f is Darboux and y is a bilateral limit of Y, (f), then f
is continuous at every point of f~'(y).

It suffices to prove the following

LeMMA 4. If f 48 Darboux and y is a limit point of Y, (f) from above,.
then f is upper semicontinuous at every point of f~'(y).

Proof. Let z¢f~'(y). Given a > y, there exists feY,(f) such that.
¥ < B < a. As x is outside the closed set f~!(8), there exists an open inter-
val U containing # which does not intersect with f~*(B). Clearly, f(U)
is then an interval that contains y but not g, and so f(2') < 8 < a for
every z'eU.

As Y, (f) always contains the complement of the range of f, Theorem 3.
yields (cf. Lipinski [16])

CoroLLARY 3.1. If f i8 Darboux and Y, (f) is dense in the range of f,.
then f is continuous.

A function is said to fulfil the Banach condition (T,) if it assumes.
almost each of its values only a finite number of times. Hence

COROLLARY 3.2. If a Darboux function f fulfils the Banach condition
(T,), then f is continuous.

The result holds in particular if f is of bounded variation, or monotone,.
or is a nowhere monotone function of the first species (see [8], p. 83).
Conversely, if a Darboux function f is discontinuous, then it is of unbound-
ed variation, and if f is discontinuous at a dense set of points, then it
is of unbounded variation in every interval. Hence (see [8], p. 83, f.n. 3),

COROLLARY 3.3. If a Darboux function f is discontinuous at a dense
set of points, then f is a mowhere monotone function of the second species.

2. Nowhere monotone Darboux functions.

LemMMA 5. If a Darboux function f is nmowhere monotone, then Y (f)
18 mowhere dense.

Proof. Firstly, Y.(f) = Y,(f), for f being nowhere monotone is
" nowhere constant. If Y,(f) is not nowhere dense, there exists a non-degen-
erate interval [a, #] with a, f ¢ Y,(f) such that Y, (f) is dense in the interval..
Then f~'(a) and f~'(B) are singletons, say x, and x,, respectively, and
x, # x,. To be specific, let ; < x, and g be the restriction of f to [z,, z,].
Then the range of g is [a, 8]; for g being Darboux, g([,, 2,]) = [a, 8],
and if there exists xe(x,, #,) for which g(x) < a [> B], then g assumes.
a [B] once again in (2, #,) [(#,, )] which is not possible since a [8]e Y,(f).
Moreover, Y,(f)N[a,B] = Y,(g9), for if ye¥Y,(f)N[a,B], vy is clearly
assumed by g at least once, and it is assumed by g only once since it is
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assumed by f only once. Thus Y,(g) is dense in the range [a, 8] of g, and
so, by Theorem 1, g is monotone, i.e. f is monotone in [%,, #;]. f being
nowhere monotone, this is not possible, and so Y,(f) is nowhere dense.

THEOREM 4. If f is a nowhere monotone Darboux function, then f~'(y)
48 a boundary set for every yeR and is dense-in-itself for a comeagre set of
values of y in R.

Proof. As f is then nowhere constant, for every yeR, f~'(y) cannot
contain a non-degenerate interval, and so is a boundary set.

If y¢ Y;(f), then f~'(y) contains an isolated point, and so there exists
an interval I in the domain of f with rational end points (or @ or b if [a, b]
is the domain of f) such that f assumes y only once in I, or such that
yeY,(f/I). Thus if {I,} is an enumeration of the subintervals of the domain
of f with rational end points (or a or b), then

* B—Y4(f) = U Ti(fIL).

But, for every n, f is equally Darboux and nowhere monotone in I,,,

and so Y,(f/I,) is nowhere dense by Lemma 5. Hence | Y,(f/I,) is meagre
and Y, (f) is comeagre. n=1

Theorem 4 holds, in particular, for every Darboux function that
is discontinuous at a dense set of points (see Corollary 3.3). It also yields
at once

COROLLARY 4.1. If f 48 Darboux and f~'(y) is scattered for a set of
values of y that is non-meagre in every subinterval of the range of f, then
there exists a family of intervals dense in the domain of f in each of which f
18 monotone.

This corollary generalizes Corollary 1 of [9], p. 65, and a result of
Marcus [18], p. 103.

As proved earlier (see [10], Theorem 2), for every Darboux function f
‘we have

m{B(f)N Y4(f)} = m{R(f)—f(D)},

‘where m denotes the Lebesgue measure, R(f) denotes the range of f and D
is the set of points where f has a finite or infinite derivative. Since a now-
here derivable function is always nowhere monotone, Theorem 4 yields
further

CoROLLARY 4.2. If a Darboux function f is mowhere derivable, then
Y y) is dense-in-itself for all but a meagre set of values of y in R that is
of measure zero.

In case f is a nowhere monotone function having everywhere a finite
derivative (for examples see [6], p. 176, f.n. 7), then the Darboux function f’
is discontinuous at a dense set of points (see [7], p. 666, Corollary 1),
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and so is nowhere monotone (see Corollary 3.3). Moreover, the only points
where f' may have a derivative are the points where f’ vanishes (see [6],
p. 176, Corollary 2), i.e., m{f' (D)} = m{0} = 0. Hence Theorem 4 yields

COROLLARY 4.3. If a nowhere monotone function f has everywhere a finite
derivative, then the set {x: f' (x) = ¢} is dense-in-itself for all but a meagre
set of values of ¢ in R that is of measure zero.

In case a Darboux function f is everywhere discontinuous, then, by
Theorem 3, Y,(f) cannot have any bilateral limit, and so is countable.
The set Y,(f) is then equally countable, and so is Y,(f/I,) in (*) for every
natural number n. Clearly, the set Y,;(f) is then cocountable.

CoROLLARY 4.4. If a Darboux function f is everywhere discontinuous,
then f~'(y) is dense-in-itself for all but a countable set of values of y in R.

There exist Darboux functions of which every level is dense-in-itself,
e.g., a function that assumes every real value at a dense set of points.
This example also shows that a nowhere monotone Darboux function
need not have any relative maximum or minimum. A continuous nowhere
monotone function, on the other hand, has always dense sets of maxima
and minima (see [11], p. 1442, Lemma 2).

Since a continuous function has closed levels, Theorem 4 yiclds
in that case

COROLLARY 4.5. If f is a continuous nowhere monotone function, then
f'(y) 48 nowhere dense for every yeR and is perfect for a comeagre set of
values of y in R.

Remark 3. Corollary 4.5 is the necessity part of author’s [9], Theo-
rem 1, and Theorem 4 is a generalization of that result to Darboux functions.
The method of proof of [9] was quite different and, in fact, we proved
there a little more, viz. that there exists a set of reals y comeagre in the
range of f such that f is oscillating at least on one side at every point z¢f~'(y).
Lemma 5 was proved by Padmavally [20] for continuous functions but
her proof is not applicable to Darboux functions. The method of proof
of Theorem 4 was first employed by Sierpinski [22] to prove that, for
every function f with a closed graph, the set Y,(f) is F,;, and has been
lately used by Khanh [15] to prove Corollary 4.5.

The converse of Theorem 4 holds equally. In fact,

THEOREM 4'. A Darboux function f is nowhere monotone if and only
if each of its levels is a boundary set and f~'(y) is dense-in-itself for a set
of values of y dense in the range of f.

Proof. The necessity follows from Theorem 4. To prove the suffi-
ciency, let f be a Darboux function satisfying the given conditions and
let, if possible, f be monotone in some non-degenerate interval [a, f].
As f has boundary levels, it is nowhere constant, and so f is strictly mono-
tone in [a, 8], i.e. f is one-to-one in [a, B]. Clearly, f(a) # f(8) and each

7 — Colloquium Mathematicum XXVIII.1
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value yef((a, B)) is assumed by f once and only once in (a, B), i.e. f~*(y)
has an isolated point for every yef((a, f)). This being contrary to the
hypothesis, f is nowhere monotone.
Theorem 4’ generalizes Lemma 2 of [9] to Darboux functions.
Next, we need the following

LEMMA 6. If a Darboux function f is mowhere monotone, then S.(f)
18 nowhere dense.

Proof. If S,(f) is dense in some interval, then, according to Theo-
rem 2, f is monotone in that interval, which is not possible since f is
nowhere monotone.

THEOREM 5. If f is @ nowhere monotone Darboux function, then there
exists a comeagre set of points x in the domain of f such that x is a limit point

of the level f~'{f(x)}.

Proof. Let E be the set of points « in the domain of f such that =
is an isolated point of f~'{f(x)}. For every z<E there exists an interval I
in the domain of f with rational end points (or a or b if [a, b] is the domain
of f) such that Inf~'{f(x)} = {=}, i.e. such that xe8,(f/I). Hence, if {I,}
is an enumeration of the subintervals of the domain of f with rational
end points (or @ or b), then

B - USi(iIL).

But f being equally Darboux and nowhere monotone in each interval
I,, by Lemma 6, S,(f/I,) is nowhere dense for every n, and so E is meagre.

CoroLLARY 5.1. If f is a mowhere monotone Darboux function, then
it has a median or extreme derivate zero at a comeagre set of points in the
domain of f.

In case f is measurable (in the sense of Lebesgue) and symmetric,
then, according to Neugebauer [19], Theorem 10, f has symmetric deriv-
ates at a comeagre set of points. As the intersection of two comeagre
sets is again comeagre, we have

COROLLARY 5.2. If a nowhere monotone Darboux function f is meas-
urable and symmetric, then there exists a comeagre set of points in the domain
of [ where

D,f=D_f<0<D*f=Df.

Remark 4. In case f is continuous, then, in Theorem 5, £ becomes
even a bilateral limit point of f~'{f(x)} (see [6], Theorem 2). Recently,
Manna [17] (see p. 67, Theorem 4 and Corollary 1) proved Theorem 5
and :is Corollary 5.1 under the extra hypothesis of semicontinuity on f.
Corollary 5.2 is an extension of Theorem 3 of [6].

It may be still remarked that in Theorems 1,2,4 and 5 the connected-
ness, or at least the local connectedness of the domain of the function
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is indispensable. For, as shown by Filipczak [5], p. 86, there exists a real-
valued continuous nowhere monotone function defined on the Cantor
set that is one-to-one.

Let, next, f be a Darboux nowhere monotone function of the second
species. For every reR, the function f(z)+ rx is then nowhere monotone
but need not be Darboux in general (see Sen [21], p. 21, Example 2).
It is known to be Darboux in case it is further of Baire class one (see [21],
p- 21, Theorem IIT). Following an argument parallel to that of [9], Section 2,
Theorem 4 leads to the following

THEOREM 6. If a Darboux function f of Baire class one is a nowhere
monotone function of the second species, then, for every countable set £ < R,
there exists a comeagre set H in R such that, for every meE and for every
ceH, the line y = mx + ¢ intersects the curve y = f(x) in a dense-in-itself
boundary set.

Theorem 5 yields, on the other hand,

THEOREM 7. If a Darboux function f of Baire class one 18 a nowhere
munotone function of the second species, then there exists a comeagre set of
points in the domain of f where the bilateral upper and lower derivates of f
are + oo and — oo, respectively.

Proof. For every natural number n, the functions f(z) 4 nx are both
nowhere monotone Darboux functions, and so, by Corollary 5.1, there
exist sets ¥, and F_, comeagre in the domain of f such that, for every
zeE, , [E_,], we have

Df(x) = n [Df(x) < —nl.
The set

is again comeagre in the domain of f and at every point xe¢E we have
Df(z) = + o0 and Df(x) = — oo.

In case f is further symmetric, then it has symmetric derivates at
a comeagre set of points in its domain, and so we have

COROLLARY 7.1. If a Darboux function f of Baire class one is symmetric
and i8 a nmowhere monotone function of the second species, then there exists
a comeagre set of points in the domain of f, where DYf = D™ f = 4 oo
and D f = D_f = —oo.

This corollary is an extension of Theorem 5 of [8].

COROLLARY 7.2. If a Darboux function f of Baire class one is derivable
at a comeagre set of points, then f is of bounded variation in a family of inter-
vals that is dense in the domain of f. '

For if f is of unbounded variation in every subinterval of some interval
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I, then f is a nowhere monotone function of the second species in I, and so,
by Theorem 7, f is non-derivable at a non-meagre set of points.

In case a Darboux function f has a non-zero derivative at a comeagre
set. of points, then, by Corollary 5.1, f is even monotone in a family of
intervals dense in the domain of f.

Theorems 6 and 7 hold, in particular, for every finite derivative,
or for every finite approximate derivative, for such a function is always
Darboux and of Baire class one. Since the derivative of a nowhere monotone
function, having everywhere a finite derivative, is discontinuous at
a dense set of points (see [7], p. 666, Corollary 1), by Corollary 3.3 it is
a nowhere monotone function of the second species, and so Theorenis 6
and 7 yield, respectively,

COROLLARY 6.1. If a nowhere monotone function f has everywhere
a finite derivative, then, for every countable set E <= R, there exists a comeagre
set H in R such that, for every meE and for every ceH, the line y = mx+c
intersects the curve y = f'(x) in a dense-in-itself boundary set.

COROLLARY 7.3. If a nowhere monotone function f has everywhere a finite
derivative, then there exists a comeagre set of points in the domain of f where
the derived function of f has its bilateral upper and lower derivates equal
to + oo and — oo, respectively.

PrOBLEM. None of Theorems 1,4 and 5 of [7] on continuous nowhere
monotone functions can be extended to general nowhere monotone Darboux
functions. For if f assumes every real value at a dense set of points, it is
clearly a nowhere monotone Darboux function and has everywhere a knot-
-point, i.e. D¥f =D f = 400 and D,f =D_f = —oo. It would be
interesting to investigate if some of these theorems can be extended to
nowhere monotone Darboux functions of Baire class one (P 833).

3. Borel measurability of the sets Y, (f) (¢ =1, ¢k, d, p).
LeMMA 7. If f is Darboux, then each of the sets Y ,(f) and Y, (f) contains
all of its bilateral limits.

Proof. Let, first, y be a bilateral limit of Y (f). To prove that f~!(y)
is connected, let x,, z,¢ f~'(y) and z, < ¢ < z,. It will suffice to show
that f(x) = y. If f(x) > y, there exists fe Y, (f) such that y < 8 < f(x).
Then f~'(B) contains at least one point in each of the intervals (a,, x)
and (z, x,) without containing x, which is not possible since BeY,(f).
Hence f(x) <y and, similarly, f(z) > y, implying thereby that f(z) = y.

Let, next, y be a bilateral limit of Y,(f) and let # be a limit point
of f~'(y). If z¢f~'(y), we have f(x) # ¥, say f(x) > y. Then there exists
Be Y, (f) such that y < B < f(»). Since f~'(B) is closed and x¢ f~!(B), there
exists an open interval U containing x that does not intersect with f~*(8).
Clearly, f(U) is then an interval containing f(x) but not 8, i.e. f(U) < (8, oo),
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i.e. Unf~!(y) = 9. Since this contradicts the hypothesis that x is a limit
point of f~!(y), we have ze f~'(¥).

Theorem 1 could also be deduced from Lemma 7.

THEOREM 8. If f is Darboux, then Y (f) and Y,(f) are Gssets of the
form F — C, where F is closed and C is8 a countable subset of the frontier of F.

Proof. If a set E of real numbers contains all of its bilateral limits,

then C = K — }E‘ contains only unilateral limits of E, and so is countable.
Clearly, E = E—C, and as FE contains the interior of E, we have

C =E—F c E— B = Fr(E).

As in Theorem 8 we have C c Fr(F), the set F —C = F°uU {Fr(F)—C},
where F° is open and Fr(F)—C is G,, and as Fr(F) is nowhere dense, so
is Fr(F)—C. Hence,

COROLLARY 8.1. If f is Darboux, then Y. (f) and Y, (f) are G,-sets of
the form GUG,, where G is open and the G,-set is nowhere dense.

The following corollary also follows directly from Theorem 8:

COROLLARY 8.2. If f s Darboux, then each of the sets Y (f) and Y, (f)
contains every open interval in which it is dense.

THEOREM 9. If f i8 Darboux, then Y,(f) is a Gsset of the form F—C,
where F is closed and C is countable. Moreover, if f is further nowhere
constant, then C < Fr(F).

Proof. In case f is nowhere constant, then Y,(f) = Y.(f) and the
result follows from Theorem 8. In general, Y,(f) = Y .(f) and C, = Y (f)—
— Y, (f) is countable since f can have only countably many lines of invaria-
bility. Thus Y,(f) = Y .(f)—C, = (F—-0)—C, = F—(CU(,).

COROLLARY 9.1. If f is Darboux, then Y,(f) is cocountable in every
interval im which it is dense. In case f i8 further nowhere constant, then Y, (f)
contains every open imterval im which it is dense.

THEOREM 10. If f is Darboux, then Y;(f) and Y ,(f) are F,;-sets of the
form G,UC, where C s countable. In case f is further nowhere constant, then
Y(f) [Y,(f)]4s also of the form F — G, [Gs— G, ], where the Gy,-set is meagre.

Proof. As seen in the proof of Theorem 4,
R—Y,(f) = L.lel(f/In)7
n=

where {I,} is an enumeration of the subintervals in the domain of f with
rational end points (or a or b). For every n, f is equally Darboux in I,
and so, by Theorem 9, Y,(f/I,) = F,—C,, where F, is closed and C, is
countable. Hence

-R_Yd(f) = D(Fn_on) = Qan_C’

n=1
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where C is a subset of () C,, and so is countable. Thus R— Y,(f)e¥F,—C

n=1

and, in turn, Y4;(f)eG,uC. Moreover, with the help of Theorem 8 we
have
Y,(f) = Y ()N X4(f) = Gsn (G, 0) = G,VC,,

where C, = C, and so is countable.

In case f is nowhere constant, then, for every n, Y,(f/I,) = Y .(f/L,),
and so, by Corollary 8.1, Y,(f/I,) =G,V N,, where G, is open and N,
is a nowhere dense G,-set. Thus

R— Yd(f) = Lgl (GnUNn) = ( L_JlGn)U( Uan) = GUM’
where G is open and M is a meagre G,,-set, whence Y,(f) =G —M
= F —G,,, where the G,,-8et is meagre. Also, then

Y, (f) = Y (NN Ya(f) = GN(F—Gy) =GN F—G,NGy,eGy— Gy,

where the G,,-set is still meagre.

CorROLLARY 10.1. If f 8 Darbouz, then each of the sets Y 4(f) and Y ,(f)
18 comeagre in every interval in which it i8 N-dense. In case f is further nowhere
constant, then each of these sets is comeagre in an interval in which it is
dense.

Remark 5. Sierpinski [22] proved that if f has a closed graph, then
Y. (f) is a G4-set and Y, (f) is an F,,-set. Theorems 9 and 10 not only extend
Sierpinski’s results to Darboux functions but also provide a more precise
form of the sets under consideration, for Corollaries 9.1 and 10.1 are not
deducible from the general forms of the sets.

What is known regarding Y ,(f) is that it is an analytic set for every
Borel measurable function f [2]. As for Theorem 10, it may be noted
that the set of values assumed by a Darboux function infinitely many
times is also of the form G;UC (see Borsuk [1]). Corollary 10.1 generalizes
Theorem 3 of [9].

Some of the results of the present paper can be extended to real-
valued functions with locally connected domain. However, as the methods
involved are quite different, we postpone the discussion to a subsequent

paper.
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