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0. Introduction. An algebraic lattice is one that can be represented
as the lattice of subalgebras of some algebra. The surprising result that
every algebraic lattice is isomorphic to the lattice of subalgebras of an
algebra of the form A x A was first proved by A. A. Iskander. Iskander
proved a stronger theorem (see Theorem A), and it is easy to modify
the proof and further strengthen this theorem. Many algebraic lattices
cannot be isomorphic to the lattice of subalgebras of a unary algebra.
We show in this paper* that the analogues for unary algebras of these
theorems are true. Also, one of the analogues is shown to be equivalent
to an axiom of choice for collections of two-element sets, while another
is independent of this axiom.

1. Results. An element ¢ of a complete lattice is compact if whenever
¢ < V(a;| i€ I), then there is a finite J < I with ¢ < \V/(a;|teJ). A lattice £
is algebraic if £ is complete and every element is the join (supremum)
of compact elements.

Let A = (A; F> be an algebra (sometimes called a universal algebra
or a general algebra). We put A* =A XA and 4> = Ax A. If Bc A%
then we let B* be the converse of Bj; i.e., B* = {(x, y>|<{y, z>e B}.
& (A) denotes the set of subalgebras and S (A) the lattice of subalgebras of .

Birkhoff and Frink [1] characterized the lattice of subalgebras of
an algebra as an algebraic lattice. For any algebra o, the mapping which
sends D to D* is an automorphism of order two of S(U?). One might at
first suspect that this would put some restriction on the class of lattices
that could be represented as an S (). But, on the contrary, Iskander
has shown that, indeed, every algebraic lattice is isomorphic to some

* The research for this paper was done when the author was a lecturer at the
University of Manitoba. The results formed a portion of the author’s dissertation at
the Pennsylvania State University and were announced in abstract 3653-295 of
the Notices of the American Mathematical Society 15 (1968).
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S (W) (see [8] or [4]). On the other hand, not every algebraic lattice is
isomorphic to an S(A") if n > 3.

Iskander [8] actually proved the following stronger theorem:

THEOREM A. If & is an algebraic lattice and o is an automorphism
of 8 of order two, then there is an algebra W with L isomorphic to S (W)
in such a way that a corresponds to the mapping D—D* for De & (W?).

One sees from this theorem that one can always have D = D* for
any subalgebra D of 2.

It is easy to modify the proof of this theorem so that {4| > m for
any preassigned cardinal m. Also, a proof can be given for this modified
theorem that does not require any choice axiom (see [4]).

A wunary algebra is one in which every operation is unary or nullary.
Not every algebraic lattice can be represented as the subalgebra lattice
of a unary algebra. If % is unary, then the join in S(U) of two subalgebras
is just their set union. Thus & () is a sublattice of the lattice of all subsets
of A; in particular, S(A) is distributive.

Throughout K denotes the class of all lattices isomorphic to S ()
for some unary algebra A,

One of the theorems of this paper is the following analogue of the
modified version of Theorem A:

THEOREM 1. If Qe K, a is an automorphism of & of order two and m
18 a cardinal number, then there exist a unary algebra W and an tsomorphism o
from £ onto S(W) with (za)e = (we)* for all xe L and |A| = m.

Iskander’s theorem does not give any information about the kind
of operations in the algebra . Hence, his theorem does not entail the
above-given result.

The following weak axiom of choice will be of special interest to us
in the case n = 2:

C,. If € is any collection of n-element sets, then there is a function y
with domain € such that y(A)ed for all Ac%.

Such a y is called a choice function. Suppose Le K, |L| > 2, and «
is an automorphism of £ of order two. We will say that the unary algebra
A = (A; F) represents the pair (&, a) if there is an isomorphism p from £
onto S(A?) with (za)e = (xe)*.

LemMMA 1. If A = (A; F) represents {8, a) and if there is an ae L
such that aa is the complement of a, then there is a choice function y on the
collection of two-element subsets of A.

Let B be the four-element Boolean lattice having elements {0, a, b, 1}.
Let a be the automorphism of B with 0a = 0, ae = b, ba = a and 1la = 1.
Set M equal to the class of all unary algebras that represent (B, a).

The proof we will give for Theorem 1 will assume C, (but no stronger
choice axiom). Thus, from Lemma 1, we get
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COROLLARY. The following are equivalent:
(i) Cq;

(ii) Theorem 1,

(ii1) for every cardinal m, there is a unary algebra (A; F>e M such
that |A| = m.

In contrast, as previously mentioned, even the modified form of
Theorem A needs no form of the axiom of choice.

Let T be the statement one gets by deleting ‘‘m is a cardinal’’ and
“lA] > m” from Theorem 1. That is, let T be the analogue for unary
algebras of Theorem A.

Let W2C be the statement: For every cardinal m, there is a set 4
such that 247 > m and there is a choice function on the collection of
two-element subsets of A.

THEOREM 2. T implies W2C.

Clearly, C, implies T. Nothing more than this and Theorem 2 is
known about the relationship of T to the axiom of choice and to the
other axioms of set theory. The possibility that there is a ‘‘real’’ mathe-
matical statement (namely, T) strictly weaker than C, and still inde-
pendent of the other axioms seems intriguing.

The next theorem (Theorem 3) is clearly a corollary to Theorem 1.
But we shall prove Theorem 4 by giving a proof of Theorem 3 that does
not use C,. That this is possible is because we shall assume in Theorem 3
that the automorphism '« has a special kind of fixed point.

The element r of the complete lattice L is complete-join irreducible
if, given any representation r = \/(x;|i¢I), where x;¢ L, then r = x;
for some je I.

THEOREM 3. Suppose that Le K, a is an automorphism of L of order
two, and m 18 any cardinal number. If there is an re L such that r +# 0,
ra = r, and r 18 complete-join irreducible, then there exist a unary algebra N
with |A| > m and an isomorphism o from £ onto S (U?) such that (xa)o = (xp)*
for all xe L.

If a is the identity map, then a, clearly, satisfies the hypothesis in
Theorem 3, and we get the following corollary:

COROLLARY. If 8¢ K, then there is a unary algebra A with L isomorphic
to S(A?).
THEOREM 4. Theorem 3 is independent of C,.

In a.forthcoming paper, R. J. Gauntt has solved the problem con-
cerning mutual interdependences of the axioms of choice for collections
of n-element sets (for all n < w). We quote the precise expression of this
statement from his paper:

“If z = {ny, ..., n,} is a finite set of natural numbers, we let C, mean
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Oy, and ... and C, . We let D, , mean, for every subgroup G of 8, without
fixed points, there is a subgroup H of G and a finite sequence H,, ..., H,
of proper subgroups of H such that
H o, L
Hy| [ Hy
Mostowski proved that D, , is sufficient for (C,—C,). We use Cohen
type forcing to prove the converse.”
In particular, Gauntt’s result shows that C, does not imply the usual
axiom of choice.
Before we can prove our theorems, we will need to know more about
members of the class K. Theorem B gives us this information which
belongs to the folklore of algebra. A reference is [3].

THEOREM B. For every lattice 8, the following statements are equivalent:
(i) Le K;

(ii) & 48 a complete sublattice of a complete, atomic Boolean lattice;

(iii) L s a complete lattice in which every element is the join of complete-
-join irreducible elements and in which the following distributive law holds
for any set I and x,y;e L:

eAN(Y;lieI) = V(eny;|ieI);

(iv) there is a partially ordered set {(P;<<) with zero such that if A
is the system of hereditary subsets of (P; <), then L is isomorphicto (M ; L, N .

With regard to (iii), in G(A) there is a 1-1 correspondence between
complete-join irreducible elements and subalgebras generated by a single
element. This is a property peculiar to unary algebras.

One should notice the similarity of representation (iv) with the
representation of an algebraic lattice as the lattice of all ideals of a semi-
lattice with zero. In proving (iii) implies (iv), one may let P be the set
of complete-join irreducible elements. For each ae L, one then defines
M, = {x|xe P and z < a}. a—>M,is an isomorphism from & to {(A#; u,N>.

Let & be a lattice, and o an automorphism of £ of order two. Suppose £
is an algebraic lattice. In proving Iskander’s theorem, one starts with
the representation of £ as the lattice of ideals of the semilattice €, where €
18 the semilattice of all compact elements of L.

Let ¢ K. The proofs for Theorems 1 and 3 of this paper start with
(iv) of Theorem B where P can be assumed to be the set of complete-join
irreducible elements of L.

There is always a compact element ¢ # 0 with ca = ¢. (In particular,
take ¢ = (avaa) for some compact a = 0.) But it is easy to construct
examples in which ra # r for every complete-join irreducible element
r # 0. It is this difference that brings choice axioms into the picture for
unary algebras.
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The particular ideas used in the construction of the present paper
are based on [4]. The general technique, however, was introduced by
Gritzer and Schmidt in [5]. It was also employed by Iskander in his
original proof in [8]. Given [4], large portions of the proofs are somewhat
routine (and much of this routine work is not reproduced here), but
frequently difficulties arise and special considerations are needed. The
addition of Lemma 7 is an example.

There has been further work in this general area, since this paper
was first written and circulated in preprint form.

In [9], Iskander modified the techniques in [4] and proved the fol-
lowing generalization of Theorem A:

THEOREM C. Let £,, Q,, &; be algebraic lattices such that |L,|, |L,| > 1.
Let a; be an automorphism of &; such that a;oa; is the identity map for i = 1
and 2. Then there are algebras W, and A, of the same similarity type, having
the following properties:

(a) there are lattice isomorphisms f; of £; onto S(W; xW;) for i =1
or 2, and an isomorphism B, of L, onto S (A, x W,);

(b) (la;)B; = (18;)* for any le L; for i =1 or 2.

Note that if U is any algebra and |A| > 1, then | (A x A)| > 1. So if
in Theorem C one removed the restriction that both |L,| and |L,| are
greater than 1, then one would have answered the unsolved problem
about the relationship between & (W) and & (A x A).

George Piegari has announced that by combining the techniques
of this paper with those of [9] he can prove the analogue of Theorem C
for unary algebras. Thus, he has improved on Theorem 1. Piegari an-
nounced this in Abstract 72T-A108, Notices of the American Mathe-
matical Society 19 (1972), A-434.

2. Preliminary lemmas. The lemmas of Section 3 give the initial
construction and the add-on construction. Before we proceed, we need
to study the algebra freely generated by a partial unary algebra.

Essentially, Lemmas 2-6 are the statements in Section 3 of [4] with
slight modifications brought on by the fact that the lemmas here are
concerned only with unary algebras. Their proofs are almost identical
with those of the earlier versions and are omitted. Lemma 7 is proved.

LEMMA 2. The algebra B, = {(B,; F) freely generated by the wunary
partial algebra B = (B; F') s characterized by the following properties:

(i) there is a subset B* of B, such that B* generates B;

(ii) the relative subalgebra B* = (B*; F> of B, is isomorphic to B;
(iii) for f,ge F and a, be B, f(a) = g(b) ¢ B* implies f = g and a = b;
(iv) if fe F, ae B,, then f(a)e B* implies a< B*. '
We may take B* = B.
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COROLLARY. Let B = (B; F) and € = (C; @) be partial unary algebras,
and let B, = (B,; F) and €, = (C,; G) be the algebras freely generated
by B and §, respectively. If B< C and F < @, and, for every felF,
D(f, B) =2 D(f, €)nB, then, for some B,, B, < 0,.

Let B(F) = {y|ye B or y = f(x) for some e B and fe F}. Let B = °B.
If "B has been defined, then we put "*'B = "B(F).

LeMMA 3. We have

(i) B, = U("B|n =0,1,2,...);

(ii) if ye"t' B —"B, then there exist uniquely x<"B and fe F with y = f(x).

In Lemmas 4, 5 and 6, B, will be the algebra freely generated by the
partial unary algebra B, D a subalgebra of B, and D = [D]g, the sub-
algebra generated by D in B, (similarly in the case of D < B?).

LEMMA 4. We have

(i) DnB = D;

(ii) there is a function 0 defined on the class of unary partial algebras
8o that 6(B) = B is a function, f: B,— B, with f(b) = b for be B and such
that ae D iff f(a)e D;

(iii) DD 1is a lattice embedding of S(B), the subalgebra lattice
of B, into S(B,).

The function g in (ii) is defined inductively based on Lemma 3.

LeEMMA 5. If all the operations of B are injective (i.e., 1-1), then

(i) the operations of B, and B are injective;

(i) (B%; F> is freely gemerated by B .

To summarize, we state the following lemma:

LEMMA 6. If all the operations of B are injective, then

(i) the operations of B, are injective;

(ii) for De & (B?), the collection of subalgebras of B2, we have D N B*> = D;

(iii) D—~ D is a lattice embedding of S(B?) into S(BI);

(iv) D* = (D)*;

(v) there is a function 6 defined on the class of unary partial algebras
with imjective operations so that 6(B) = B is a function, B: B:— B, with
B(b) = b for all be B* and such thal, for any ae B2, ae D iff f(a)e D.

The important effect of the map g in (v) is, of course, limited to the
subalgebra generated by B? in B2. The map is defined on all of B} for
notational convenience.

LEMMA 7. There is a function v defined on the class of partial unary
algebras having injective operations so that, for every B, if v(B) = R, then
[R] = R = B?— B, and in the relative subalgebra (R; F> the domain of
every operation is empty.
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Proof. Let B be a partial unary algebra with 1-1 operations. Since

the operations of B are injective, Lemmas 2 and 5 imply that Bf-l?"'
is a subalgebra of BZ. Let

Qo = {<ao, a1 | {ay, a;} < 'B and <a,, a,) ¢§2}

with !B defined as before in Lemma 3. If @, has been defined, set

Qnir = {<a'oa @, | {ay, a,} = "**B and (a,, a,> ¢E—2UL§0[Q1]}-

Finally, set B = (J(Q;|? = 0,1,2,...) and »(B) = R.

Since B} — B? is a subalgebra, it is easy to check that [R] = B}— B,..

Let fe F', and {a,, a,> ¢ R. There exists uniquely a k with {(ay, a;>€Q,.
By Lemma 2 and the definition of @,, it is easy to show that f({a,, a,>) ¢Q;
for any ¢. Thus, f({a,, @,>) ¢ B and the domain of f in the relative sub-
algebra (R; F') is empty. Since f was arbitrary, this -completes the proof
of the lemma.

3. Construction lemmas. The proofs of Theorems 1 and 3 are trivial
if |L| = 1. So, hereafter, we will assume that |L| > 1.

Elements with the following property will be employed frequently
in the rest of the paper:

(%) re L is complete-join irreducible, » # 0 and ra = r.

LEMMA 8. If Qe K, m is any cardinal number, and a any automorphism.
of 8 of order two, then there exists a unary partial algebra B = {(B; F)
and an isomorphism o from L onto S(B?) such that

(i) m< |B[; .

(ii) (za)o = (zo)* for all xe L;

(iii) all operations in F are imjective;

(iv) there is a distinguished element (bJ, b}>e B® with by # b ;

(V) if thereis an r e L having property (+x), then [{bF, b >1* = [(b, b1

Moreover, if there is an r with property (*x), then the existence of B
does mot depend on any choice axiom, otherwise, C, implies the existence of B.

Proof. As in Theorem B, P is the set of complete-join irreducible
elements of €, .# is the set of hereditary subsets of (P; <), and a—M,
is an isomorphism of £ onto {#; N, u)>. Observe that (M,)a = M,,.
Let C be some set with m< |C|] and C &£ P, Set B = Pu(, and fix a
boe B—P. If there is an r with property (*x), fix one such element and
call it r,. If there is no r with (xx), fix an » # 0 and call it r,.



48 W. A. LAMPE

Define a mapping y from P into the power set of B? as follows:
0y = {<b, b)| be B};
_ {<ryboy, <byyr>} if 0 £7r #£7r, and r = ra,
N {Kr, ra>} if r #7ra and ry #r # rya;
roy = BE—U(rylre P—{ro}) if rea =r,.

To complete the definition of y if rja # r,, we will employ C,. Set

Q =B — (U(“/’”"P—{To’ roa}) U{{ro, Tya), {roa, 7'o>})-

Let A be the set of two-element subsets of ¢ that are of the form
{{=z, y>, <y, x>}. Let y: A—Q be a mapping guaranteed by C,. Now set

roy = {{ro, road}uyx(4) and (rea)y = B*—U(ry|re P—{rya}).
It is obvious that
(1) rp # O for all re P;
(2) r, # r, implies rypyNr,p = O;
(3) (ra)y = (ry)* for all re P;
(4) U(ry|reP) = B

Now define partial operations on B as follows:

(b) every be B is the value of a nullary operation f,;

(6) for 0 = r, <7, and <{a;,y,>er;p, a partial unary operation f
is given by f(#,) = @, f(¥2) = %1, and D(f) = {@,, y,}.

The operation f is well defined and 1-1 since r, % 0 #* r, implies
Ty £ Y. :

I?J/et F be the set of all operations defined by (5) and (6), and let
B = (B; F). Define a mapping ¢ of # into &(B*) as follows:

Ma(p = U(“/’I re Ma)-

It is a routine matter to check that ¢ is an isomorphism from {.#; n, U)
onto S(B?). Now define ¢: L+ (B?) by woc = M,p for xe L. Since ¢
is the composition of two isomorphisms, it is an isomorphism. Since
M,a = M,, and (ra)y = (ry)*, we infer that (ra)ec = (zo)* for all xe L.

For rya = 7y, set {bf, bf> = {ry, by, and for r,a # 7,, set b, b
= {rq, Toay. Clearly, <bj, b;"> has the required properties.

Finally, the only place in the proof that a choice axiom was used
was in the definition of y in case there was no r with property ().

The unary partial algebra B = {Bj; @) is an expansion of the partial
algebra A = (A; F) if A < B, the similarity type of U is contained in
the similarity type of B, and if f(a,) is defined in U, then f(a,) is defined
in B, and the two values are equal. B is a singular expansion of A if B
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is an expansion of A, A is a relative subalgebra of (B; F), [A] = B,
and A < D(f,B) for fe F.

-Let I' be the class of ordered pairs of the form (B, {b,, b,>>, where
B = (B; F) is a partial unary algebra with injective operations, b, # b,,
(b, by>e B, and [(by, b,>] = [{by, bo>]. Let D be a subalgebra of BZ.

LeEMMA 9. There is a function y: I' — I' such that if (B*, (b, b >
= (B, <bo, by>)), then

(i) B is a singular expansion of B;

(ii) D — [D]g+p is an isomorphism of S(B*), the subalgebra lattice
of B onto S((B)).

Remark. In Lemmas 9 and 10, if D is a subalgebra of 82, then [D]
means [D}g+e while D means [Dlg2.

Proof. Let (B, <by, b,>)>e I', where B = (B; F). Let B, = (B,; F)
be the algebra freely generated by B, and g: B — B} the mapping given
by (v) of Lemma 6. Let {a,, a,>¢ BZ, and ({a,, a,>) = {cq, €D

For each (a,, a,)> ¢ B* — B?, define a partial unary operation f on B,
with D(f) = {a,, a4}, f(a,) = ¢, and f(a,) = ¢,. Because of the properties
of # and since the diagonal is always a subalgebra, a, = a, iff ¢, = ¢;.
Thus, such an operation f is well defined and 1-1. Let F, be the set of all
such partial operations; i.e., for each <{a,, a,>e B* — B, there exists an f
(defined above) in F,.

For each (a,,a,)¢ Bf_ﬁz, define two partial unary operations f
and g on B, with D(f) = {ao, a;}, D(9) = {bo, b1}, f(a) = bo, ﬁau) = by,
g(by) = a, and ¢(b,) = a,. Since the diagonal is a subset of B?, we get
a, # a,. Since b, # b,, such f and g are well defined and 1-1. Let F,
be the set of all such partial unary operations. (The set of operations #,
is partly, for dealing with the fact that while B generates B,, B? need
not generate B}.)

Let B+ = (B,; FUF,UF,>, set <(bf,bf> = (by,b,>, and write
(B3 (boy by)Y) = (B*, by, bi>)>. Clearly, the operations of B+ are
injective, and b +# by .

Since (B,; F) is the algebra freely generated by B, it is obvious
that Bt = (B,; FUF,UF,) is a singular expansion of B; i.e., (i) is satisfied.

Let D be a subalgebra of B?, and let E be a subalgebra of (B*).
In order to complete the proof of the lemma, we need only the following
five statements:

(a) Let fe F, and let f({a,, a,>) be defined. Then <{ay,a,>e D iff
J(ao, ar>)e D.

(b) If {by, by>¢ D, then D = [D]. B

(¢) If (by, by €D, then [D] = DU(B}— B?).

4 — Colloquium Mathematicum XXX.1
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(d) [D]InB* = D.

(e) E = [EnB].

Their proofs are routine and are left to the reader.

Now consider the mapping D—[D] which is from % (B?) into & ((B*)?).
Since B* is a singular expansion of B, if F is a subalgebra of (B*)? then
E N B? is a subalgebra of B2 Thus, (e) implies the mapping is onto. Let D,
and D, & (B?). By (d), D, < D, iff [D,] < [D,]. Thus, the mapping is
an isomorphism. So (ii) holds.

Now, since D—[D] is an isomorphism from &(B?) onto &((B*))
and since [<{bg, bi>lmz = [<by, bo)le2, it follows that [{bg, bi> s+
= [<by, bo)Jig+32- Thus (B, (by, b>>e I' and y: I'>T.

It should be observed that y was defined without the use of any
choice axiom, provided, of course, that, without using any choice axiom,
one can prove the existence of a function on the class of partial unary
algebras so that the image of any partial algebra is the algebra freely
generated by that partial algebra. That this can be done is both known
and fairly obvious. Moreover, it can be done in such a way that the state-
ment of the Corollary to Lemma 2 is satisfied by the images of B and ¢
under this funection.

Lemma 9 will be used in a proof of Theorem 3 which is independent
of any choice axiom. The next lemma will be a similar one for proving
Theorem 1.

Let A4 be the class of ordered pairs (B, <{b,, b,>), where B is a partial
unary algebra with injective operations, b, # b,, and <b,, b,>¢ B2 (So
I'c A.) Let B = {(B; F), and let B, = (B,; F') be the algebra freely
generated by B. Let 4’ be the class of ordered triples {B, <b,, b1, 1),
where (B, <(by, b,>>ed and y is a choice function on the collection of
two-element subsets of B,. Let K < F. Let B — K denote the partial
algebra derived from B by ‘‘throwing away”’ the operations that are in K,

LEMMA 10. There is a function 6: A'— A such that if

6(<%7 <boy b1) X>) = <Q3+7 <b(-)':7 bi'_>>’
then

(i) B s a singular expansion of B;
(ii) D—>[D] is an isomorphism from &(B?), the subalgebra lattice of B?,
onto S((B*)?);
(i) B+ = (By; FUOGUH) and B+ —(GUH) = B,.
Moreover, there is a function &' defined on A’ so.that &' ((B, by, b1D, 1)

= {7, 1'), where v and t' are 1-1 indexings of G and H by U and V which
are subsets of B3 — B

Remark. The proof is very'similar to that of Lemma 9. We will
examine only those details that are different. Since we have a choice
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function (and of necessity), we will use only an appropriate ‘‘half” of the
set F', of operations. Half of this half will be the set H. The set G will
consist of the set F,, as in the proof of Lemma 9, together with the other
half of the appropriate half of the set #,. The function ¢’ is the reason
for this rearrangement. '

Proof. Let (B, <by, b)), x> 4’, and let R be the image of B under
the function of Lemma 7. Set

X = {<ao’ a) | {ay, a;>e B and a, = yx({a,, “1})}-

Now XuX* = R. Since R< B:— B}, XnX* =@. Set Y = X. So
Y* = X* = X*. By Lemma 7, we infer that the domain of every operation
in the relative subalgebra <(R; F) is void. So, by Lemma 5 and by (iii)
and (iv) of Lemma 2, it follows that YNnY* = @. Also, since R = B — B?,
XuX* = R, and B is a unary partial algebra, we have YuY* = BI — B>

Define the set F; of operations as in the proof of Lemma 9.

For each {ay, a,>¢Y, define an operation f with D(f) = {a,, a,},
f(ay) = b, and f(a,) = b,.

Let G be the set of all those partial operations defined above includ-
ing F,. Set U = (B*—B?)uY. Thus, G has a natural 1-1 indexing by U,
call it 7, and U < B:—B%.

For each (a,y, a,>¢Y, define a partial unary operation g with D(g)
= {be, b}, g(by) = a, and g(b,) = a,. Let H be the set of all these oper-
ations, and let Y = V. There is a natural 1-1 indexing of H by V, call
it v', and V < B} — B> Set &' ({B, <by, b, 1)) = <7, 7.

Set F, = HU(G — F,). (This is the appropriate half of F,.)

Set B* = (B,; FUGUH), <bf, bf> = <by, b,), and 6(<237 <bo, b1, Z>)
= (B, (b, bf>>. As in the proof of Lemma 9, all the additional oper-
ations are well defined and 1-1; since b, # b,, it follows that é: 4'—4.

By construction, (i) holds. Clearly, (ii) holds as in the proof of Lemma 9.

Statements (a), (d) and (e) from the proof of Lemma 9 do not need
to be altered, but (b) and (c) do.

(b") If {<boy b1>y <by, bpp}ND = B, then [D] = D.

(Co) If by, b>e D and <{by, by>¢ D, then [D] = DUY.

(¢;) If (by, b,>¢ D and (by, byd>e D, then [D] = DuY".

(c2) If {<bo; b1), <b1,bod} = D, then [D] = Du(Bi—B’).

By (a), if D is any subalgebra of B?% then D is closed under FUF,.
By construction, ¥ and Y* are closed under F. Also, B:— B’ is closed
under F'. Since the operations of F, are defined only within I—fz, we infer
that Y, Y* and B,— B? are closed under F,. Since we are dealing with

unary algebras, DuY, DuY* and Du(B:—B?) are all closed under
FOUF,.
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It is easily shown that

(1) {<be, b1D}UY is the smallest subset of B: containing {by, b,> and
closed under Fy;

(2) {<by,y bop} U X™ is the smallest subset of B: containing <b,, b,> and
closed under Fy;

(8) {<bg,y by, <{by, b} U(Bi — B?) is the smallest subset of B: containing
both (by, b,> and <{b,, b,> and closed under Fy;

(4) B*—{<by, by, <{by,boy} is closed under F,.

Now statements (c;) follow easily from these four statements.

The rest of the proof is identical with that of Lemma 9.

It should be observed that the proof of Lemma 10 requires no choice
axiom.

Let I'" be the class of partial unary algebras with injective operations,
let B =(B;F>eI, and let B, = (B,; F> be the algebra freely gen-
erated by B.

LeMMA 11. There is a function y': I —I" such that if y'(B) = (B'; F'),
then B =B,, F' = FOG'UH' and B —(G¢'VH') = B,. Also, there is
a function y'’ defined on I such that y'’'(B) = {u, p'>, where u and u’
are 1-1 indexings of G' and H', respectively, by Bi— B’. Moreover, for
fe F'—F, it holds that D(f,B’) = 9.

The proof is trivial.

4. Proofs of the theorems. Our treatment will be informal. We will
not deal with a specific axiom system for set theory. We will assume
that we are dealing with a theory that is strong enough so that we can
form algebras, the set of finite sequences on a set, and so on. We will,
of course, assume no choice axiom is part of our system.

We give a proof for Theorem 1 which employs C, but no other
choice axiom, and we give a proof of Theorem 3 using no choice axiom.
All of this rests on the fact that there exists a function defined on the
class of partial algebras so that the image of a partial algebra is the algebra
freely generated by it.

We complete the paper by giving a proof of Lemma 1 and Theorem 2.

Proof of Theorem 3. Let m be any cardinal number, let ¢ K,
let a be an automorphism of £ of order two, and assume that there is
a complete-join irreducible element r # 0 with ra = r. Let °B = (°B; °F)
=B as given by Lemma 8, and let (°b,, °b,> = (b, b;y> be given by
Lemma 7. By (iii), (iv) and (v) of Lemma 8, {°B, (%h,, > e I If
("B, ("by, "b,>> has been defined, set

<n+123’ <"+1b0, n+1b1>> — <<n+1B; n+lF>’ <n+1b0, n+1b1>>
= 7(<n23, {"by, nb1>>}7
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where y is the function given by Lemma 9. Let A = (J("B|» = 0,1, 2, ...),
F=U™F|n=01,2,...), and A = {4; F).

Let acA and fe F. There exists a k with a<*B and fe*F. Since **'@
is a singular expansion of *®B, f(a) is defined in **'%B. Also, since *'®B is
a singular expansion of /B, the value of f(a) in B for j > k + 1 is the same
ag in *+18. So A is a well defined unary algebra.

Let us agree that, for a subalgebra D of B% [D] = [D]y and [D],
= [D]xgyz. It can easily be shown that [D] = U([DL|k =0,1,2,...).
Using this, it is easy to show that the map D—[D] is an isomorphism
of S(B?) onto S(A?).

Now m < |B| < |A|. By Lemma 8, there is an isomorphism ¢ from £
onto S(B?). Thus, if xp = [vc], then p is an isomorphism from £ onto
S(A?). Since, for any X < A% we have [X*] = [X]*, and since, by (ii)
of Lemma 8, (za)o = (xo)*, we infer that (wa)e = [(za)c] = [(z0)*]
= [wo]* = (wo)".

The proof of Theorem 1 will mimic the proof of Theorem 3. However,
we must be careful to avoid making countably many choices of choice
fungtions since- we want to assume only C,.

Proof of Theorem 1. Let m be any cardinal number, let 8¢ K,
and let a be an automorphism of £ of order two. Let °B = (°B;°F) =B
and {°b,, °b,> = (b, bi>, where B and (b}, b;"> are given in Lemma 8.

Set °C = °B. If "€ has been defined, set (**'C, **'@) = "*'C = y'("E)
and ("*'u,"t'u’> = 9"’ ("C), where y’ and "’ are functions given by
Lemma 11. Let D = (J("C|n =0,1,2,...), assume C,, and let y be
a choice function on the collection of two-element subsets of D.

Since °B < °B, = 'C < D, if % is the restriction of y to the collection
of two-element subsets of °B,, then {(°B, (°b,, °b,>, % e 4’. Suppose
"B = ("B;"F), and suppose that the element {"B, ("b,, "b,>, x> of A’
has been defined in such a way that "B < "C, "F < "@ and so that D(f, "B)
2 D(f, "€)n"B. Set

<n+123:’ <n+lbo’ n+1b1>> — 6(<n%’ <nbo’ "'b1>, nx>)’

where 4 is given by Lemma 10, and "t'®’ = ("*'B’;*"'F'>. By the
Corollary to Lemma 2, we obtain "*'B = "B, < "(, = "*!(. In accordance
with Lemmas 10 and 11, we have

nHp = "FUG,0H, and "G ="@GUG,VH,.

Now, using the functions 7"’ and d’, as given by Lemmas 11 and 10,
and their values u,u’ and 7, 7', respectively, we set f = u(v~!(f)) for
fe@, and f = p/'(v'"'(f)) for fe H,. Set

"R — "FO{f | fe G, UH,}.
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Note that "*'F < "*'G. We define the unary partial algebra "*'®
= (""B;"F> by setting ""'B = ""!B’, by retaining all operations
from "F as they were defined in ""'®’, and by having the value f(w)
in "B equal the value f(x) in "*'®B’. Note that D is a subalgebra of
n+1B" « "B’ iff D is a subalgebra of "B x "B and that "*'B is a singular
expansion of "B. Also, we infer that "*'B < "*'C. From Lemmas 10 and 11
and from the definition of "*'B, it follows that D(f, "*'8) =2 D(f, "*'C)nB
for all fe"*'F. Using the Corollary to Lemma 2, we obtain "*'B, = "*!(C,
= "*20 < D. So we can define "'y to be the restriction of y to "*'B,,
and we have ("B, ("*'by, "*'b,>, ¥"*'> e A'. Then the rest of the required
conditions are satisfied, as noted above.

Now we have the sequence of partial unary algebras B, ..., ™B, ...
The rest of the proof is exactly as in the proof of Theorem 3.

Proof of Lemma 1. We suppose that A = (4; F) represents <&, a)
and that aa is the complement of a for some ae L. We take o as the iso-
morphism from £ to S(A?) satisfying (za)e = (z0)*. Set B = ap. So,
we have Bv B* = BUB* = A’ since A’ is the greatest element of S(>).
We also know that B A B* = BNB" is the zero of G(U?). D = {{a, a> | qeA}
is always a subalgebra of 2. So BNB* = D. Now let a,, a,¢ A with a, + a,.
These facts imply that precisely one of {a,, a,> and {a,, a,> is a member
of B. So we define the required y by x({a,, a,}) = a, iff <ay, a,>e B = ap.

We close with a proof of Theorem 2.

Proof of Theorem 2. We need only show that, for each cardinal m,
there is a pair {8, a) with |[L| > m and with an le L such that la is the
complement of I. Let |[X| >m, ¥ = X x{0,1},and & = (2¥; n, U). Let «
be the unique extension of the mapping which sends (x, 0> to (z, 1)
and <{x,1> to {(x, 0) for all zeX. We are done if we take I = X x {0}.
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