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1. Preliminary remarks. The class & of functions f(z) regular and
univalent in the open unit disk 4,

4={z€eC: |7l <1},

and normalized by the conditions f(0) =0 and f’(0) = 1 has been the prime
target of analysts working in geometric function theory for over 7 decades.
The motivation for much of their work was Bieberbach’s Conjecture [2].
Now that Professor Louis de Branges has shown the conjecture to be true,
attention of investigators may turn to other classes as well. For example,
meromorphic univalent functions, regular univalent functions with other
normalizations and multivalent functions. The object of this report* is the
class of bounded functions with Montel’s normalization.

Let a be fixed, 0 <a <1, and let f(z) be regular and univalent in 4.
The function f(z) is in Montel's class #(a) if

(L.1) f0=0 and f(a)=a,

i, 0 and a are fixed points. (Normalizations such as this were proposed by
P. Montel and encouraged by work of R. Nevanlinna and G. Pick; see, e.g.,
[9]) If f(z) is in .#(a), then there is a function g(z) in .’ such that

ag(2)

g(a)’

and conversely. This relationship has been exploited by a number of authors
(Lewandowski [8], Krzyz [6], Krzyz and Zlotkiewicz [7]) to determine

distortion and covering properties for .#(a) and some of its subclasses.
The subclass of .#(a) whose members F(z) are bounded by M,

[F(2) <M for zed,

(1.2) f@)=

* This work was done while the second-named author was a visiting professor at the
University of Delaware.
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will be denoted by #(a; M). [In this notation, .#(a) is sometimes written
M(a; +o0). However, for brevity, we will usually write .# for .#(a), and
M(M) for M (a; M).]

It is our purpose to establish some properties of functions in .#(M).
For example, if F(z) = 4,z+A,z*>+..., we find sharp upper and lower
bounds for |A4,|. We give the sharp Koebe constant for the class along with
some distortion theorems and establish the correct upper bound for

3’ @ (log |F (re®))do.

2. Coefficient and distortion theorems. Transformation (1.2) can be used
to determine some properties of M from &. However, (1.2) is not sufficiently
restrictive to give good information about .#(M). The next statement gives a
more effective transformation.

LEMMA 1. If F(z) is in # (M) and o is real, then

F(z)(1+€*a/M)?
21 = .
@1 ¢ =y FEymp
is in MA.
This follows from properties of the Koebe function
: z
(22) kﬂ (Z) = m .
THeOREM 1. If F(2) = A z+ A,z +... is in M (M), then
1—a \? ( 1+a \?
. < < .
o (e ()

Furthermore, both bounds are best possible.
From (2.1) we get

el 2
2.4) G'(0) = 4, (1+ Ma)

The distortion theorem for % and (1.2) give
(2.5) (1-a? <G’ (0] < (1+a)

Now, with proper choices of a, (2.4) and (2.5) give the inequalities (2.3).
The left-hand side is rendered sharp by

(2.6) . L(z) = MK, (M ( 1-a )2 k,,(z)),

M-—a
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and the right-hand side by
2 h
@7 K (2) = MK, (M( l+a ) ko(z))

M+a

(k denotes the inverse of k).

Our next theorem provides information about the region of values of A4,
for F(z) in #(M).

THEOREM 2. If F(2) = A;z+ A,z%+... is in M(M), then the region of
values of log A, lies in the simply-connected and convex set given by

M?*(1-a? <log1+a}

(28) U {w:

log——
@ Og(M+e""a)2 1—a

for 0 <a <2nm.
Our justification of Theorem 2 follows from (1.2), (2.4) and the inequality

f@) 141z
= +log(1 —|z|?
log=——+log (1 —|2|") —

for f(z) in & due to Grunsky ([3]; see also [4], p. 107). From (1.2) and (2.4)
we get

a e a\?
(2.10) logg—(-a—) = log [Al (1+ i ) -l

and, consequently,

(29) < log

.g(a) ) A, ( e*a
. —1082'? _1og(1—a?) = 1 .
(2.11) log " log(1—a?) log(l_a2)+2log + M
Let W =log(A;/(1—a?); then.(2.9) and (2.11) show that W lies in the disk
e*a 1+a
. = . < _
(2.12) D, {w |w+2103 (1+ i ) log l—a}

for some a. )
The mapping L(z) = 2log(1+ az/M) is univalent and convex for |z| < 1;
hence

I ={w: o = L("%,0< 6 <2n}
is a closed convex Jordan curve which lies in the rectangle given by
2log(1—a/M) < Re {w} < 2log(1 +a/M)

and
Im {w}| < 2arcsin(a/M).
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Now, since 2arcsin(a/M) < log (1 +a)/(1 —a), we conclude that the set | ) D, is
a
simply-connected and convex and that all values log(A4,/(1 —a?) lie in {j D,.

This concludes Theorem 2.

Is Theorem 2 best possible? Functions corresponding to the boundary
points of the region of values of log(f (a)/a) (inequality (2.9)), in ., map 4
onto the plane slit along a ray or a spiral [4]. However, if it is a spiral, then
(2.1) is not applicable. Hence the question of whether the region of values of
log A, is exactly the set given by (2.8) remains open.

The 4-Theorem for % has an analog in #(M).

THeOREM 3. All values omitted by any member of M (M) lie outside the
open disk given by

M(1-a)?
2.13) ol < MKk, (74‘ ( M_“a) )

Suppose d = min|F(z)| for |z| = 1. Then (1.1) and (2.1) and the triangle
inequality give

dil+é*a/M? _ . |af (2)
(A—g/Mp > minlG @ > min |0

Now, if we choose a = &, then

d(1-a/M)* _(1-a)®
(1-d/M)? =~ 4

1
> Z(l —a)z.

which, in turn, is equivalent to (2.13). This bound is sharp as (2.6) shows.

Theorem 3 gives the Koebe disk about the origin for .#(M): one may
ask for the Koebe disk centered at a. Our solution uses symmetrization and
properties of hyperbolic distance.

First we recall some known results. If G is a region in the plane, then its
circularly symmetric image with respect to the ray {xeR: x < a} will be
denoted by G*. Also, the hyperbolic distance between w, and w, relative to
G will be written as g(w,, w,; G). It is known [6] that this metric does not
increase under symmetrization; consequently, we may write

(2.14) (0, a; G) = ¢(0, a; G*).

Suppose now that d, is the radius of the Koebe disk about a for .#(M).
This means’ there is a function h(z) in the class such that

(2.15) do = dist {a, dh[4]},
where h[4] is the image of 4 under h(z) and dh[4] is its boundary.
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Let D = {|jw| < M: w¢[a+d,, M]}, ie, D is the open disk of radius M
centered at the origin and slit along [a+d,, M]. Then (h[4])* = D and (see
[10])

(2.16) (0, a; (h[4])*) = ¢(0, a; D).
The hyperbolic distance is a conformal invariant, i.e.,
e(0, a; 4) = ¢(0, h(a); h[4])
(see [10]) and this with (2.14) and (2.16) implies that
0(0, a; 4) = ¢(0, a; D).

The function K (z) of (2.7) maps 4 onto the disk of radius M centered at the
origin and slit along [K (1), M]. Also, D « K[4] and

0(0, a; 4) = ¢(0, a; D) = ¢(0, a; K[4])).

However, ¢(0, a; K[4]) = ¢(0, a; 4), which guarantees that D = K[4] and
that d, is given by K(z). This proves the next statement.

THEOREM 4. If
M(1+a 2)
do = Mko (T M+a) %

{w: lw—a| <dy} =« (\ F[4].

M M)

then

The value d, is best possible.

The question of finding the Koebe domain, () F[4], remains open.
MM)
We have shown it includes the disks of Theorems 3 and 4. Is it disjoint for

some a? (P 1355) Other methods will have to be devised for a resolution of
‘this question.

3. The integral means. Bounds on the integral means of functions and
their derivatives have proved useful, and obtaining them has provided
challenges of intrinsic interest. The most significant contribution has been
made by Baernstein [1]. His methods have been exploited by a number of
authors (see, e.g., [2]).

THEOREM 5. If ®(x) is convex and non-decreasing on R, and K(2) is as
in (2.7), then

3.1) [ ®(log|F(re®))d8 < | & (log|K (¢ db)

for all F(z) in ##/(M) and 0 <r < 1.
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The proof makes use of the method of Baernstein with some modifica-
tions. We state some notation and theorems given by Baernstein [1] (see
also [2]).

If g is a measurable, extended real-valued function on [—m, ], then

(32) g*(6) = sup [g(6)do,
E E

the supremum being taken over all Lebesgue measurable sets E in [ —n, ]
for which m(E) = 26.

LEMMA 2 ([1]). If u is continuous and subharmonic in the annulus r, < |z|
<r,, then u* is continuous in the semi-annulus

{reé®. r, <r<ry, 0<6<n}

and subharmonic in its interior.

LemMA 3 ([1]). The following are equivalent for g and h in L' [— =, n]:
(a) For every convex non-decreasing function @ on R,.

j P (g(x))dx < j ® (h(x))dx.

(b) For every t in R,

[ 90— dx < | [h(9—1]* dx.

(c) g*(6) < h*(6) for 0< <™

For the proof of our theorem we let

_ |—log|F(w) for @ in F[4],

¢ u(e) = {0 otherwise,

(34) o(@) = { —log|K (@)  for w in K[4],
0 otherwise.

Both these functions are continuous and subharmonic for 0 <|w| and they
are harmonic in F[4]\ {0} and K [4]\ {0}, respectively. The equivalence of
(@) and (b) in Lemma 3 shows that to establish (3.1) it suffices to prove that

(3.5) ( log* ('F (:’w)')de < _[ log* ('K(;ew)')do,

¢ > 0; and this, in view of the formula of Cartan (see [1]) is equivalent to

(3.6) ’i [_u (€9 +logr]* do < ? [v(0e'®) +logr]* do
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for 0<r <1 and 0 <p < M. Finally, the equivalence of (b) and (c) in
Lemma 3 shows that (3.6), and hence Theorem 5, follows from showing that

-(3.7) u* (e') < v*(0e")
for 0<O0<mand 0 <o <M.
u*(0e'®) is subharmonic in the open semi-disk
={w: o] <M, Imw > 0},

while v*(0e'®) is harmonic there (see, e.g., [1], Proposition 5). Consequently,
u*(pe' —v* (0% is subharmonic in D.
For w in some neighborhood of the origin we may write

u(w) = —log ‘F,(O) +uy (w)
and
(@) = ~log |7 | +01 (@)
u (w) and v, (w) are harmonic and u, (0) = v, (0) = 0. Then

F'(0

u(w)—v(w) = log X' (0 ©

+u; (w)—v, ()

is harmonic about the origin. Therefore (u* —v*)(w) is bounded and con-
tinuous on D, the closure of D. To guarantee (3.7), an application of the
Phragmeén-Lindelsf Principle (see [10]) shows that it is enough to prove that
(u*—v*)(w) < 0 on aD.

On |wl=M and for 0<w <M, u*(w) =v*(w) =0: consequently,
(u* —v*)(w) < O there. Hence only the interval [—M, 0] must still be
considered.

Let d be the Koebe constant for .#(M); d is the radius of the disk given
in (2.13) and d = dist{0, K [4]}. If d, = dist {0, OF [4]}, then, unless F
=K, dy,>d. |

First we assume —d < e/ < 0. In this case both u(w) and v(w) are

" harmonic and we may write
_Q_| *(pei™ = — 21l ‘Ll

F(Q)
K0

u*(ee’™) = —2nlog
“and

(u *—p*)(ge'™) = —2rlog <0.

This completes the proof for —d < —¢ <0.
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For ¢ near zero,
(u* —v*)(0e™) = —20log F(0

K’_(O) +0(0),

which implies that

lim (u* —v*)(w) < 0.

w -0

This covers the case at zero.
For d <p <M and ¢ >0 we let

(3.8) P(e") = (u* —v*)(ge'’) -6

for a given ¢ > 0. The function P(w) is subharmonic in D and continuous in
D\ {0). Choose g, (—M < go < —d); then

P(go €™ = sup{P(go ¢*)}.
The symmetric non-increasing rearrangement u* of u is
)
u* (o) = [ u(ge")ds.
-0
Hence we may conclude (see [1], Proposition 2) that

3.9) lim Y@ €N U o) _, 4(00 €% = 0,

0 —n n—0 0<0<x

as the circle |w| = g, meets the complement of F[4].
Furthermore, for ¢ <d, we have

e ¢ ;
+ j L3 (Qe")dt,

*(0e%) = —201
»*(ee") "Font ),

which gives

ov* (oé
g ) = —2]nIF?(°0)l+Zv,(Qoe") =2(po€? =0

and, as a result, (3.9) and (3.10) yield

oP

im —

[ Bt w

(3.9) and (3.10) taken together contradict the condition that
P(go€M—P(go€?) = 0.

(3.10)

(00€®) = —e—2v(go €™ < 0.

From this we infer that
u*(—g) < v*(—g)+en

for d < p <d,; then letting ¢ =0 gives the result sought.
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The case where — M < —¢ < d, is handled in a similar manner. This
concludes our discussion of the theorem.

CoroLLARY. If F(z) is in M (M), then
|F (2)] < max|K(z)| = K(—|z]).

lzl=r

This is obtained by choosing &(t) = expt? and letting p — + co.
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