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1. Introduction. The theory of proximity and uniform spaces includes
2 variety of “completions”. Among these we meet the completion [1]
of a proximity space (X, §) taken to be relative to the total (generalized)
uniformity %, in the proximity class n(d) of 8, and the completion [6]
of (X, d) by clusters. In addition, realcompletions of proximity spaces
are defined in [11], and funectionally complete uniform spaces (X, %),
with % € n(4), are studied in [2].

Harris has shown [4] that the completion of (X, §) in the realcompact
structure of & is the Q-closure of X in the Smirnov compactification
éX of (X, d).

The purpose of this paper is to determine relationships among these
completions. In particular, we show that, barring spaces of measurable
cardinal, each of the following conditions implies the next:

(A) (X, %) is functionally complete for some # € n(4);

(B) (X, d) is realcomplete;

(C) (X,%,) is complete;

(D) (X, 8) is complete in its realcompact structure.

Conditions (A) and (B) are in fact equivalent, and examples are
provided to show that the remaining implications cannot be reversed.
Functionally complete uniform spaces are also characterized by means
of stable clusters and stable families of closed sets. From this a charac-
terization of realcompact spaces is obtained.

2. Completion of (X, #,) and functionally complete spaces. Let ¥,
be the gauge associated with %, according to Leader’s Theorem of [5].
The uniform structures in this paper are generalized in the sense of [1],
which also provides that %, is the largest member of the class =(d).

Now %, is precisely the collection of subsets of X x X which are
“entourage-like” (relative to 8). If ¢ is any pseudometric for X compatible
with J, the subset V = {(», y): o(x, ¥) < 1} of X x X is entourage-
like, s0 that Ve#, and oe€%,. Since every pseudometric in ¥,
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is compatible with J, evidently ¢, is the collection of all compatible
pseudometrics for (X, 4).

In Theorem 2.1 we make explicit the fact tha.t the completion X* of
(X, 8) by clusters may be regarded as the completion of (X, #,). By
Theorem 5 of [6], every member ¢ of ¥, has an extension to a compatible
pseudometric ¢* on X*, where X* is regarded as a p-subspace of X. Thus,
if 4% is the gauge for the total uniform structure 47 for X*, then ¥
={c*:0€9%,)}.

THEOREM 2.1. The completion of (X, %,) is (X*, ).

Proof. Clearly, (X, #,) is a dense uniform subspace of (X*, Z%)e
It remains to show that (X*, %) is complete.

Let #* be a Cauchy round filter in (X*, #?%). Since 6X is the Smirnov
compactification of (X*, 6*), where 6* is the proximity associated with
%, F* converges to a point o* of 6X. Now z* is close to small sets relative
to &%, hence z* ¢ X**. But X** = X* by Theorem 5 of [6], so z*e X*
and the proof is completed.

Let #p be the weak (generalized) uniform structure deter mined by
the collection P(X) of all real-valued proximity functions on (X, d),
and let »; X be the realcompletion of (X, 4). By ¥ » we denote the weak
uniform structure on », X determined by P(»,X). The algebra of bounded
imembers of P(X) is indicated by P*(X).

Given an admisgible uniformity # for X, we denote by U(X, #)
the collection of real-valued functions on X which are uniformly contin-
uous with respect to # and the standard metric uniformity on the real
numbers. Let w# be the weak uniform structure for X generated by
U(X,%). Evidently, w# < %. Following Fenstad [2], we say that #
i8 functionally determined if % = w%, and (X, %) i8 functionally complete
if % is functionally determined and (X, #) is complete.

For % e n(8), U(X, %) satisfies

P*(X)<c U(X,%) < P(X).

Thus the functionally determined uniform structures are precisely
the weak uniform structures %y, where 8 satisfies P*(X) < S = P(X).
Njéstad has shown (see Theorem 3 of [11]) that the completions of the
spaces (X, %g) are realcompletions of (X, §). However, not all comple-
tions of (X, #), where % € n(38), are realcompletions (¢f. Example 2.6
of [9]).

THEOREM 2.2. The total structure %, in n(9) is functionally determined
if and only if (X*, %%) = (v, X, ¥p).

Proof. The necessity follows from Theorem 2.1 and from Corollary 2.5
of [9], which provides that (v,X, ¥p) is the completion of (X, #p).

The sufficiency is obvious, and the proof is complete.
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Equality of the subsets X* and v, X of 6X is, however, inadequate
to guarantee that #, = %p, as is shown by the following example.

Example 2.1. Let X be any uncountable discrete space of non-
measurable cardinal, let %, and é be the uniform structure and proximity
associated with the discrete metric, respectively. Here P(X) = C(X),
the ring of continuous real-valued functions on X. Since X is realcompact,
vsX = X. The only small sets in X are single points, so X* = X also.
Now v, X = X*, but wZp = %p is properly contained in %, (see 15.23B
of [3]).

In [2] the question is raised as to the existence of a complete uniform
space (X, %) which is not functionally determined and such that (X, w#)
is also complete. Example 2.1 settles this question affirmatively, since
both (X, #,) and (X, w#,) are complete, but w#, # #%,.

By definition, every point of X* is close to %, -small sets, and since
Up < U,, we have X* c v, X. Example 2.6 of [9] shows that this inclusion
may be proper. Thus (X*,#") need not be the completion of (X, %)
for any functionally determined uniform structure # e = (4).

THEOREM 2.3. A proximity space (X, 8) 18 realcomplete if and only
if there exists % € n(0) for which (X, %) is functionally complete.

Proof. Sufficiency. Suppose that (X, ) is functionally complete
for some # € n(8), and let # be a Cauchy round filter in (X, #p). Each
fe U(X, %) determines a pseudometric ¢, for X. Now U(X, %) < P(X)
implies o, € ¥p, the gauge for #,. Thus & contains sets of arbitrarily
small ¢,-diameter. Since # is functionally determined, the pseudometrics o,
feU(X, %), gencrate a gauge for . Thus, # is a Cauchy round filter
in (X, %), so that # converges to a point # of X. It now follows that
s X = X.

Necessity. If (X, d) is realcomplete, then (X,%p) is complete,
and the proof is completed.

Example 2.2. Let X be the unit ball in I,, the space of square-sum-
mable real sequences, and let é be the proximity for X associated with the
standard metric for X. As is shown in Example 2.6 of [9], P(X) = P*(X),
so that =(d4) contains no functionally determined uniform structures
other than the unique totally bounded structure #, in =(8). However,
since n(d) contains at least two distinet uniform struetures, it must contain
uncountably many by Corollary 2.1.3 of [12]. We note that while (X, d)
is not realcomplete, X is realcompact.

If (X, d) is any non-compact, realcomplete proximity space, then
(X, %p) is functionally complete, but (X, #,) is not. Thus, in case where
7(0) does contain some functionally complete uniform structure, (X, %)
need not be functionally complete for all functionally determined %
in z(4).
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3. %-stable clusters and families of closed sets. Let % € x(4).

Definition. A family of sets .# = {F,:ae A} is %-stable if, for
each fe U(X, %), there exists F, e .# such that f is bounded on F,.

This definition follows Mandelker’s definition of a stable family
in [8], and the definitions coincide in case where # is the uniformity for
X determined by C(X). Clusters in proximity spaces are defined in [7],
where it is shown that a necessary and sufficient condition that (X, d)
be compact is that every cluster in (X, ) contain a point. The following
theorem includes a similar characterization for functionally complete
Spaces.

THEOREM 3.1. If % € n(5) and % is functionally determined, then the
Jollowing conditions are equivalent:

(A) (X, %) is functionally complete.

(B) Every %-stable cluster in (X, ) contains a point.

(C) Every %-stable family of closed subsets of X having the finite imter-
section property has a non-empty intersection.

Proof. (A)=>(B). Let ¥ be a #-stable cluster in (X, ). From Theo-
rems 2 and 3 of [7] it follows that there exists p € 6X satisfying

pe{Clx4d: A e %} .

Let #? be the unique maximal round filter in (X, 6) which converges
to p. Since U(X, %) = P(X), each fe U(X, %) has an extension f° map-
ping 6X into the Smirnov-compactification of the real numbers B (taken
with respect to the standard metric proximity for R). If f’(p) is not real
for some f e U(X, %), then by Theorem 2.2 of [9] the sets

F, ={rveX: |f(x)| >n}

belong to #? for each positive integer n. Since #? is the trace on X of
the family of neighborhoods of p in éX, each F, meets every member
A of €. But |[f|>n on F,NnA, hence f is unbounded on every member
of €, which is a contradiction.

Thus, f’(p) is real for each fe U(X, %), and since # is functionally
-determined, #? is a Cauchy filter in (X, %). By (A), p € X so that {p} € €.

(B) =(C). With appropriate modifications, this is similar to the proof
that (B) implies (C) in Theorem 4.3 of [10].

(C)=(A). Suppose that (X,%), where % e =(é8), is not complete.
Then the completion of (X, %) is a subset of X which contains X properly
(see Theorem 8 of [1]). Choose p € 6X — X such that p is a point in the
completion of (X, ). Let #* be the unique maximal round filter in (X, 9)
which converges to p.

Now every fe U(X,#) can be extended to a uniformly continuous
function f, mapping the completion of (X, #) into R. For each ¢> 0,
the inverse image under f of the z-ball about f,(p) must be a member



PROXIMITY AND UNIFORM SPACES 59

of #?.8ince # = w%, it is clear that #? is a %-Cauchy filter. Thus the
family {ClyF : F €e#?} is %-stable and has the finite intersection

property. But N{ClF: F c5?} — @,
which contradicts (C).
This completes the proof.

We note that if any of the conditions of Theorem 3.1 are satisfied
for functionally determined (X, %) with % € n(4d), then (X, ¢) is realcom-
plete and each of the conditions of Theorem 4.3 of [10] holds. However,
for any realcomplete, non-compact proximity space (X, §) we have #,
functionally determined but not functionally complete. Thus conditions
(A)-(C) of Theorem 3.1 are not equivalent to those of Theorem 4.3 of [10].

Setting 6 = B, where fis the proximity associated with the Stone-Cech
compactification of X, we have #, = ¥, the uniform structure generated
by C(X). From Theorem 3.1 we obtain

COROLLARY 3.1. For a completely regular space X, the following condi-
tions are equivalent:

(A) X s realcompact.

(B) (X, %) is complete.

(C) Every. stable cluster contains a point.

(D) Ewery stable family of closed sets with the finite intersection prop-
erty has a non-empty intersection.

The equivalence of (A) and (D) is Theorem 5.1 of [8].

4. Other relations among completions. The @-closure of a proximity
space (X, d) is the set @, X of points in éX such that p € @, X if and only
if, whenever fe P*(X) satisfies f°(p) = 0, there exists # € X for which
f(z) = 0 (see [4]). Harris has shown that- @, X is the completion of X
in the realcompact structure of 4, and that p € Q,X if and only if #?
has the countable intersection property (see 7.1 and Theorem F of [4]).

We say that (X, 6) is Q-closed if Q,X = X. Let N be the positive
integers and, for subsets A and B of X, we let A < B denote that B is
a p-neighborhood of A.

THEOREM 4.1. Let (X, 6) be a proximity space, where every closed dis-
crete subspace has non-measurable cardinal. Then each of the following
conditions implies the next:

(A) (X, d) is realcomplete.

(B) (X, %,) is complete, where %, is the total uniform structure in w(4d).

(C) (X, 6) is Q;-closed.

Proof. (A)=(B). This follows from Theorem 2.5 of [9], Theorem 2.1
and the fact that X* < ,X.

(B)=(C). To facilitate the proof, we adapt some of the techniques
of 15.17 and 15.18 of [3] to the present context.



60 D. A. MATTSON

Let p € Q,(X). By 7.1 (B) of [4], #® has the countable intersection
property. Let o be any pseudometric for X compatible with 4, and take
e > 0. From 15.17 of [3] it follows that there exist sets 4,, such that

X =U{4,;:mneN,ze X}

and where, for each n» € N, the family {4,,: € X} is o-discrete of gauge
e/4n and o[4,,.] < /2.
For each ne N, set

F,..={yeX:0[A,;,y] <e/12n}.

Now A,, < F,, for all n e N and # € X. Moreover, the family .#,
= {F,,: v € X} is o-discrete and ¢[F, ] < e. Clearly,

X = {F,:neN,xeX}.
For each ne N, set M, = |J{4,,: v € X}. If, for each n € N, there
exists B, e #? satisfying M, N B, =@, then
N{B,:neN} =@,

which is & contradiction.
Thus, there exists m e N for which BNnM,, # O for all B e #°. Take

K, =U{F,:xeX}.

Evidently, M,, < K,,. Since every member of #? meets M, , the
maximality of #? provides that K,, e #*.
Select a point p, from each F, in K, and set

8 = {pz:Fme‘K:&}°

Thus, S is o-discrete and realcompact, since card § is non-measurable.
Construct a filter ¥g on S as follows. For 4 = 8, put 4 € ¥4 if and
only if

U {Fpz: P € A} € FP.
The sets F,,, v € X, are disjoint so that the correspondence .
A o U{sz:pz GA}

preserves union and intersection. Thus, ¥g has the countable intersection

property.
Let A < 8 and consider the sets

C=U{F:p.ed} and D ={F,.:p,c8—A}.

If neither C nor D belongs to #7?, then there exist sets U, V in #?
for which

Un(U{Adms:P.€4}) =0 and V(U {4p:p.€8—4}) =0.
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Select U,, V, € #?, where U, < U and V, € V. Then

U{dpz:0,€4} <K X—U;, and U{dp:p,e8—-4}<X-V,,
80 that
M, < [(X—T)U(X-T))].

Now both (X —U,)U(X—V,) and U,nV, belong to #?, which is
impossible. Thus C e #? or D € #?, which implies that either 4 € ¥4 or
S —A € %g. It now follows that % is a z-ultrafilter in 8 with the countable
intersection property. Since § is realcompact, there is a point p, € 8 such
that {p,} € 5. Thus, the corresponding set F,, € %* and o¢[F,,] < e.
Since ¢ is an arbitrary pseudometric compatible with 4, #? is a Cauchy
filter relative to %,. Hence p € X* and X < @,X < X*. Now (B) implies
X* = X, by Theorem 2.1.

This completes the proof.

None of the implications of Theorem 4.1 can be reversed. Exainple 2.2
demonstrates a proximity space (X, é) for which (X, #,) is complete, but
(X, 8) is not realcomplete.

If we let X = (0, 1) with the proximity d induced by the usual metric
on R, then 6X = [0,1]. Now @, X = X, but the completion of (X, %,)
is 06X

Finally, suppose the existence of a measurable cardinal. Let X be
a discrete space of such a cardinal and let 6 be the associated proximity.
Then X* = X, but X is not realcompact, 80 @; X # X. Thus the restriction
concerning discrete subspaces cannot be avoided.
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